Most cited article - PubMed ID 22802977
Kinetics of antibody response in BALB/c and C57BL/6 mice bitten by Phlebotomus papatasi
Antibodies against Phlebotomus perniciosus sandfly salivary gland homogenate (SGH) and recombinant protein rSP03B, sandfly-borne Toscana virus (TOSV), Sandfly Fever Sicilian virus (SFSV) and Leishmania, as well as DNA of the latter parasite, were investigated in 670 blood samples from 575 human donors in Murcia Region, southeast Spain, in 2017 and 2018. The estimated SGH and rSP03B seroprevalences were 69% and 88%, respectively, although correlation between test results was relatively low (ρ = 0.39). Similarly, TOSV, SFSV and Leishmania seroprevalences were 26%, 0% and 1%, respectively, and Leishmania PCR prevalence was 2%. Prevalences were significantly greater in 2017, overdispersed and not spatially related to each other although both were positively associated with SGH but not to rSP03B antibody optical densities, questioning the value of the latter as a diagnostic marker for these infections in humans.
- Keywords
- Leishmania infantum, anti-saliva antibodies, blood donors, sandflies, sandfly fever sicilian virus, toscana virus,
- MeSH
- Blood Donors MeSH
- Leishmania infantum * MeSH
- Leishmaniasis * parasitology veterinary MeSH
- Humans MeSH
- Phlebotomus * parasitology MeSH
- Antibodies MeSH
- Psychodidae * MeSH
- Recombinant Proteins MeSH
- Sandfly fever Naples virus * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Spain epidemiology MeSH
- Names of Substances
- Antibodies MeSH
- Recombinant Proteins MeSH
BACKGROUND: In onchocerciasis endemic areas in Africa, heterogenous biting rates by blackfly vectors on humans are assumed to partially explain age- and sex-dependent infection patterns with Onchocerca volvulus. To underpin these assumptions and further improve predictions made by onchocerciasis transmission models, demographic patterns in antibody responses to salivary antigens of Simulium damnosum s.l. are evaluated as a measure of blackfly exposure. METHODOLOGY/PRINCIPAL FINDINGS: Recently developed IgG and IgM anti-saliva immunoassays for S. damnosum s.l. were applied to blood samples collected from residents in four onchocerciasis endemic villages in Ghana. Demographic patterns in antibody levels according to village, sex and age were explored by fitting generalized linear models. Antibody levels varied between villages but showed consistent patterns with age and sex. Both IgG and IgM responses declined with increasing age. IgG responses were generally lower in males than in females and exhibited a steeper decline in adult males than in adult females. No sex-specific difference was observed in IgM responses. CONCLUSIONS/SIGNIFICANCE: The decline in age-specific antibody patterns suggested development of immunotolerance or desensitization to blackfly saliva antigen in response to persistent exposure. The variation between sexes, and between adults and youngsters may reflect differences in behaviour influencing cumulative exposure. These measures of antibody acquisition and decay could be incorporated into onchocerciasis transmission models towards informing onchocerciasis control, elimination, and surveillance.
- MeSH
- Child MeSH
- Adult MeSH
- Insect Vectors immunology parasitology MeSH
- Immunoglobulin G blood MeSH
- Immunoglobulin M blood MeSH
- Insect Bites and Stings epidemiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Onchocerca volvulus growth & development MeSH
- Onchocerciasis epidemiology transmission MeSH
- Child, Preschool MeSH
- Antibodies blood MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Simuliidae immunology parasitology MeSH
- Saliva immunology MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Immunoglobulin G MeSH
- Immunoglobulin M MeSH
- Antibodies MeSH
BACKGROUND: Canine leishmaniosis caused by Leishmania infantum is a neglected zoonosis transmitted by sand flies like Phlebotomus perniciosus. Clinical signs and disease susceptibility vary according to various factors, including host immune response and breed. In particular, Ibizan hounds appear more resistant. This immunocompetence could be attributed to a more frequent exposure to uninfected sand flies, eliciting a stronger anti-sand fly saliva antibody response. METHODS: This study aimed to investigate the prevalence of anti-P. perniciosus saliva antibodies in Ibizan hounds and dogs of other breeds in the Leishmania-endemic area of Mallorca, Spain, and to correlate these antibody levels with clinical, immunological and parasitological parameters. Anti-sand fly saliva IgG was examined in 47 Ibizan hounds and 45 dogs of other breeds using three methods: P. perniciosus whole salivary gland homogenate (SGH) ELISA; recombinant protein rSP03B ELISA; and rSP03B rapid tests (RT). Additionally, diagnostic performance was evaluated between methods. RESULTS: Results indicate significantly higher anti-SGH antibodies (P = 0.0061) and a trend for more positive SGH ELISA and RT results in Ibizan hounds compared to other breeds. General linear model analysis also found breed to be a significant factor in SGH ELISA units and a marginally significant factor in RT result. Although infection rates were similar between groups, Ibizan hounds included significantly more IFN-γ producers (P = 0.0122) and papular dermatitis cases (P < 0.0001). Older age and L. infantum seropositivity were also considered significant factors in sand fly saliva antibody levels according to at least one test. Fair agreement was found between all three tests, with the highest value between SGH and rSP03B RT. CONCLUSIONS: To our knowledge, this is the first study elaborating the relationship between anti-P. perniciosus saliva antibodies and extensive clinical data in dogs in an endemic area. Our results suggest that Ibizan hounds experience a higher frequency of exposure to sand flies and have a stronger cellular immune response to L. infantum infection than other breed dogs. Additional sampling is needed to confirm results, but anti-P. perniciosus saliva antibodies appear to negatively correlate with susceptibility to L. infantum infection and could possibly contribute to the resistance observed in Ibizan hounds.
- Keywords
- Anti-sand fly saliva antibodies, Canine leishmaniosis, Ibizan hounds, Leishmania infantum, Papular dermatitis, Phlebotomus perniciosus, rSP03B,
- MeSH
- Breeding MeSH
- Endemic Diseases MeSH
- Insect Proteins immunology MeSH
- Immunoglobulin G immunology MeSH
- Leishmaniasis immunology veterinary MeSH
- Disease Susceptibility MeSH
- Dog Diseases immunology parasitology MeSH
- Phlebotomus immunology MeSH
- Dogs MeSH
- Salivary Proteins and Peptides immunology MeSH
- Saliva immunology MeSH
- Zoonoses parasitology transmission MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Spain MeSH
- Names of Substances
- Insect Proteins MeSH
- Immunoglobulin G MeSH
- Salivary Proteins and Peptides MeSH
BACKGROUND: Canine leishmaniasis (CanL) is a severe chronic disease caused by Leishmania infantum and transmitted by sand flies of which the main vector in the Western part of the Mediterranean basin is Phlebotomus perniciosus. Previously, an immunochromatographic test (ICT) was proposed to allow rapid evaluation of dog exposure to P. perniciosus. In the present study, we optimized the prototype and evaluated the detection accuracy of the ICT in field conditions. Possible cross-reactions with other hematophagous arthropods were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: The ICT was optimized by expressing the rSP03B protein in a HEK293 cell line, which delivered an increased specificity (94.92%). The ICT showed an excellent reproducibility and inter-person reliability, and was optimized for use with whole canine blood which rendered an excellent degree of agreement with the use of serum. Field detectability of the ICT was assessed by screening 186 dogs from different CanL endemic areas with both the SGH-ELISA and the ICT, and 154 longitudinally sampled dogs only with the ICT. The ICT results corresponded to the SGH-ELISA for most areas, depending on the statistical measure used. Furthermore, the ICT was able to show a clear seasonal fluctuation in the proportion of bitten dogs. Finally, we excluded cross-reactions between non-vector species and confirmed favorable cross-reactions with other L. infantum vectors belonging to the subgenus Larroussius. CONCLUSIONS/SIGNIFICANCE: We have successfully optimized the ICT, now also suitable to be used with whole canine blood. The test is able to reflect the seasonal fluctuation in dog exposure and showed a good detectability in a field population of naturally exposed dogs, particularly in areas with a high seroprevalence of bitten dogs. Furthermore, our study showed the existence of favorable cross-reactions with other sand fly vectors thereby expanding its use in the field.
- MeSH
- Insect Vectors parasitology physiology MeSH
- Immunoassay methods MeSH
- Leishmania infantum physiology MeSH
- Leishmaniasis blood diagnosis parasitology veterinary MeSH
- Mice, Inbred BALB C MeSH
- Dog Diseases blood diagnosis parasitology MeSH
- Phlebotomus parasitology physiology MeSH
- Dogs MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Hosts repeatedly bitten by sand flies develop antibodies against sand fly saliva and screening of these immunoglobulins can be employed to estimate the risk of Leishmania transmission, to indicate the feeding preferences of sand flies, or to evaluate the effectiveness of vector control campaigns. Previously, antibodies to sand fly saliva were detected using whole salivary gland homogenate (SGH) or recombinant proteins, both of which also have their disadvantages. This is the first study on sand flies where short peptides designed based on salivary antigens were successfully utilized for antibody screening. METHODOLOGY/PRINCIPAL FINDINGS: Specific IgG was studied in hosts naturally exposed to Phlebotomus orientalis, the main vector of Leishmania donovani in East Africa. Four peptides were designed by the commercial program EpiQuest-B, based on the sequences of the two most promising salivary antigens, yellow-related protein and ParSP25-like protein. Short amino acid peptides were synthesised and modified for ELISA experiments. Specific anti-P. orientalis IgG was detected in sera of dogs, goats, and sheep from Ethiopia. The peptide OR24 P2 was shown to be suitable for antibody screening; it correlated positively with SGH and its specificity and sensitivity were comparable or even better than that of previously published recombinant proteins. CONCLUSIONS/SIGNIFICANCE: OR24 P2, the peptide based on salivary antigen of P. orientalis, was shown to be a valuable tool for antibody screening of domestic animals naturally exposed to P. orientalis. We suggest the application of this promising methodology using species-specific short peptides to other sand fly-host combinations.
- MeSH
- Enzyme-Linked Immunosorbent Assay methods MeSH
- Immunoglobulin G blood MeSH
- Goats MeSH
- Sheep MeSH
- Peptides immunology MeSH
- Phlebotomus immunology MeSH
- Mass Screening methods MeSH
- Antibodies blood MeSH
- Dogs MeSH
- Sensitivity and Specificity MeSH
- Salivary Proteins and Peptides immunology MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Ethiopia MeSH
- Names of Substances
- Immunoglobulin G MeSH
- Peptides MeSH
- Antibodies MeSH
- Salivary Proteins and Peptides MeSH
BACKGROUND: Phlebotomus orientalis is a vector of Leishmania donovani, the causative agent of life threatening visceral leishmaniasis spread in Eastern Africa. During blood-feeding, sand fly females salivate into the skin of the host. Sand fly saliva contains a large variety of proteins, some of which elicit specific antibody responses in the bitten hosts. To evaluate the exposure to sand fly bites in human populations from disease endemic areas, we tested the antibody reactions of volunteers' sera against recombinant P. orientalis salivary antigens. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant proteins derived from sequence data on P. orientalis secreted salivary proteins, were produced using either bacterial (five proteins) or mammalian (four proteins) expression systems and tested as antigens applicable for detection of anti-P. orientalis IgG in human sera. Using these recombinant proteins, human sera from Sudan and Ethiopia, countries endemic for visceral leishmaniasis, were screened by ELISA and immunoblotting to identify the potential markers of exposure to P. orientalis bites. Two recombinant proteins; mAG5 and mYEL1, were identified as the most promising antigens showing high correlation coefficients as well as good specificity in comparison to the whole sand fly salivary gland homogenate. Combination of both proteins led to a further increase of correlation coefficients as well as both positive and negative predictive values of P. orientalis exposure. CONCLUSIONS/SIGNIFICANCE: This is the first report of screening human sera for anti-P. orientalis antibodies using recombinant salivary proteins. The recombinant salivary proteins mYEL1 and mAG5 proved to be valid antigens for screening human sera from both Sudan and Ethiopia for exposure to P. orientalis bites. The utilization of equal amounts of these two proteins significantly increased the capability to detect anti-P. orientalis antibody responses.
- MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- Insect Proteins genetics immunology MeSH
- Immunoglobulin G immunology MeSH
- Insect Bites and Stings immunology parasitology MeSH
- Humans MeSH
- Phlebotomus genetics immunology physiology MeSH
- Recombinant Proteins genetics immunology MeSH
- Salivary Proteins and Peptides genetics immunology MeSH
- Saliva immunology MeSH
- Antibody Formation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Africa, Eastern MeSH
- Names of Substances
- Insect Proteins MeSH
- Immunoglobulin G MeSH
- Recombinant Proteins MeSH
- Salivary Proteins and Peptides MeSH
BACKGROUND: Canine leishmaniasis (CanL) is a zoonotic disease, caused by Leishmania infantum and transmitted by Phlebotomus perniciosus in the Mediterranean basin. Previously, an ELISA based on the P. perniciosus salivary protein SP03B was proposed as a valid tool to screen for canine exposure to sand fly bites across regions endemic for CanL. Although this approach is useful in laboratory settings, a practical tool for immediate application in the field is needed. In this study we propose the rSP03B sero-strip, the first immunochromatographic test (ICT) in the field of vector exposure able to rapidly screen dogs living in endemic areas for the presence of P. perniciosus and to aid in the evaluation of vector control programs. METHODOLOGY/PRINCIPAL FINDINGS: The ICT was prepared using the bacterially expressed recombinant protein rSP03B as antigen. For test optimization, pre-immune sera from non-bitten laboratory-bred Beagles were used as negative controls. In order to validate the test, sera from laboratory-bred Beagles experimentally exposed to P. perniciosus bites were used as positive controls. Additionally, all samples were tested by ELISA using whole salivary gland homogenate (SGH) and the rSP03B protein as antigen. An almost perfect degree of agreement was found between the ICT and the SGH-ELISA. Furthermore, the newly proposed rSP03B sero-strip showed a sensitivity of 100% and a specificity of 86.79%. CONCLUSIONS/SIGNIFICANCE: We developed a simple and rapid ICT based on the P. perniciosus rSP03B salivary protein, able to replace the standard ELISA used in previous studies. Our rSP03B sero-strip showed to be highly sensitive and specific in the detection of antibodies (IgG) against P. perniciosus saliva. In the future, this test can be employed during large-scale epidemiological studies of CanL in the Mediterranean area to evaluate the efficacy of vector control programs.
- MeSH
- Time Factors MeSH
- Chromatography, Affinity veterinary MeSH
- Enzyme-Linked Immunosorbent Assay methods MeSH
- Insect Vectors MeSH
- Insect Proteins MeSH
- Insect Bites and Stings immunology veterinary MeSH
- Leishmania infantum MeSH
- Dog Diseases diagnosis parasitology MeSH
- Phlebotomus immunology MeSH
- Dogs MeSH
- Reagent Strips MeSH
- Sensitivity and Specificity MeSH
- Serologic Tests veterinary MeSH
- Zoonoses MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insect Proteins MeSH
- Reagent Strips MeSH
BACKGROUND: Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. METHODS AND FINDINGS: In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. CONCLUSIONS: In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host-sand fly-parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
- MeSH
- Leishmania immunology MeSH
- Psychodidae parasitology physiology MeSH
- Salivary Proteins and Peptides immunology metabolism MeSH
- Saliva immunology parasitology MeSH
- Feeding Behavior * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Salivary Proteins and Peptides MeSH
BACKGROUND: Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. METHODOLOGY/PRINCIPAL FINDINGS: Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. CONCLUSIONS/SIGNIFICANCE: Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.
- MeSH
- Antigens genetics immunology MeSH
- Mass Spectrometry MeSH
- Animals, Domestic * MeSH
- Immunoblotting MeSH
- Insect Bites and Stings diagnosis MeSH
- Goats MeSH
- Sheep MeSH
- Antibodies blood MeSH
- Dogs MeSH
- Psychodidae genetics immunology MeSH
- Recombinant Proteins genetics immunology MeSH
- Salivary Proteins and Peptides genetics immunology MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens MeSH
- Antibodies MeSH
- Recombinant Proteins MeSH
- Salivary Proteins and Peptides MeSH
BACKGROUND: Phlebotomine sand flies are vectors of Leishmania parasites. During blood feeding, sand flies deposit into the host skin immunogenic salivary proteins which elicit specific antibody responses. These anti-saliva antibodies enable an estimate of the host exposure to sand flies and, in leishmaniasis endemic areas, also the risk for Leishmania infections. However, the use of whole salivary gland homogenates as antigen has several limitations, and therefore, recombinant salivary proteins have been tested to replace them in antibody detection assays. In this study, we have used for the first time sand fly salivary recombinant proteins in a longitudinal field study on dogs. METHODOLOGY/PRINCIPAL FINDINGS: Sera from dogs naturally exposed to P. perniciosus bites over two consecutive transmission seasons in a site endemic for canine leishmaniasis (CanL) were tested at different time points by ELISA for the antibodies recognizing whole saliva, single salivary 43 kDa yellow-related recombinant protein (rSP03B), and a combination of two salivary recombinant proteins, 43 kDa yellow-related protein and 35.5 kDa apyrase (rSP01). Dogs were also tested for Leishmania infantum positivity by serology, culture, and PCR and the infection status was evaluated prospectively. We found a significant association between active CanL infection and the amount of anti-P. perniciosus saliva antibodies. Importantly, we detected a high correlation between IgG antibodies recognizing rSP03B protein and the whole salivary antigen. The kinetics of antibody response showed for both a whole saliva and rSP03B a similar pattern that was clearly related to the seasonal abundance of P. perniciosus. CONCLUSIONS: These results suggest that P. perniciosus rSP03B protein is a valid alternative to whole saliva and could be used in large-scale serological studies. This novel method could be a practical and economically-sound tool to detect the host exposure to sand fly bites in CanL endemic areas.
- MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- Endemic Diseases veterinary MeSH
- Leishmaniasis immunology veterinary MeSH
- Longitudinal Studies MeSH
- Dog Diseases immunology MeSH
- Phlebotomus immunology MeSH
- Polymerase Chain Reaction veterinary MeSH
- Antibodies immunology MeSH
- Dogs MeSH
- Recombinant Proteins immunology MeSH
- Risk Factors MeSH
- Salivary Proteins and Peptides immunology MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Italy MeSH
- Names of Substances
- Antibodies MeSH
- Recombinant Proteins MeSH
- Salivary Proteins and Peptides MeSH