Nejvíce citovaný článek - PubMed ID 22827831
PURPOSE: A new high-resolution next-generation sequencing (NGS)-based method was established to type closely related European type II Toxoplasma gondii strains. METHODS: T. gondii field isolates were collected from different parts of Europe and assessed by whole genome sequencing (WGS). In comparison to ME49 (a type II reference strain), highly polymorphic regions (HPRs) were identified, showing a considerable number of single nucleotide polymorphisms (SNPs). After confirmation by Sanger sequencing, 18 HPRs were used to design a primer panel for multiplex PCR to establish a multilocus Ion AmpliSeq typing method. Toxoplasma gondii isolates and T. gondii present in clinical samples were typed with the new method. The sensitivity of the method was tested with serially diluted reference DNA samples. RESULTS: Among type II specimens, the method could differentiate the same number of haplotypes as the reference standard, microsatellite (MS) typing. Passages of the same isolates and specimens originating from abortion outbreaks were identified as identical. In addition, seven different genotypes, two atypical and two recombinant specimens were clearly distinguished from each other by the method. Furthermore, almost all SNPs detected by the Ion AmpliSeq method corresponded to those expected based on WGS. By testing serially diluted DNA samples, the method exhibited a similar analytical sensitivity as MS typing. CONCLUSION: The new method can distinguish different T. gondii genotypes and detect intra-genotype variability among European type II T. gondii strains. Furthermore, with WGS data additional target regions can be added to the method to potentially increase typing resolution.
- Klíčová slova
- Discriminatory power, Highly polymorphic regions, Intra-genotype variability, Multilocus sequence typing, Toxoplasmosis, Typing,
- MeSH
- genetická variace MeSH
- genotyp MeSH
- lidé MeSH
- multiplexová polymerázová řetězová reakce MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- protozoální DNA genetika MeSH
- těhotenství MeSH
- Toxoplasma * genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální DNA MeSH
Camels are considered an important food source in North Africa. Trypanosomiasis in camels is a life-threatening disease that causes severe economic losses in milk and meat production. Therefore, the objective of this study was to determine the trypanosome genotypes in the North African region. Trypanosome infection rates were determined by microscopic examination of blood smears and polymerase chain reaction (PCR). In addition, total antioxidant capacity (TAC), lipid peroxides (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were determined in erythrocyte lysate. Furthermore, 18S amplicon sequencing was used to barcode and characterizes the genetic diversity of trypanosome genotypes in camel blood. In addition to Trypanosoma, Babesia and Thelieria were also detected in the blood samples. PCR showed that the trypanosome infection rate was higher in Algerian samples (25.7%) than in Egyptian samples (7.2%). Parameters such as MDA, GSH, SOD and CAT had significantly increased in camels infected with trypanosomes compared to uninfected control animals, while TAC level was not significantly changed. The results of relative amplicon abundance showed that the range of trypanosome infection was higher in Egypt than in Algeria. Moreover, phylogenetic analysis showed that the Trypanosoma sequences of Egyptian and Algerian camels are related to Trypanosoma evansi. Unexpectedly, diversity within T. evansi was higher in Egyptian camels than in Algerian camels. We present here the first molecular report providing a picture of trypanosomiasis in camels, covering wide geographical areas in Egypt and Algeria.
- MeSH
- antioxidancia MeSH
- fylogeneze MeSH
- genotyp MeSH
- superoxiddismutasa genetika MeSH
- Trypanosoma * genetika MeSH
- trypanozomiáza * epidemiologie veterinární MeSH
- velbloudi MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- severní Afrika MeSH
- Názvy látek
- antioxidancia MeSH
- superoxiddismutasa MeSH
PCR has become one of the most valuable techniques currently used in bioscience, diagnostics and forensic science. Here we review the history of PCR development and the technologies that have evolved from the original PCR method. Currently, there are two main areas of PCR utilization in bioscience: high-throughput PCR systems and microfluidics-based PCR devices for point-of-care (POC) applications. We also discuss the commercialization of these techniques and conclude with a look into their modifications and use in innovative areas of biomedicine. For example, real-time reverse transcription PCR is the gold standard for SARS-CoV-2 diagnoses. It could also be used for POC applications, being a key component of the sample-to-answer system.
- Klíčová slova
- COVID-19, PCR, RNA virus diagnoses, digital PCR, microfluidics, point-of-care diagnostics, portable systems, reverse transcription PCR,
- MeSH
- Betacoronavirus genetika izolace a purifikace MeSH
- COVID-19 MeSH
- design vybavení MeSH
- klinické laboratorní techniky přístrojové vybavení metody MeSH
- koronavirové infekce diagnóza virologie MeSH
- lidé MeSH
- mikrofluidní analytické techniky přístrojové vybavení metody MeSH
- pandemie MeSH
- polymerázová řetězová reakce přístrojové vybavení metody MeSH
- SARS-CoV-2 MeSH
- testování na COVID-19 MeSH
- virová pneumonie diagnóza virologie MeSH
- vyšetření u lůžka MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Kinetoplastid flagellates are known for several unusual features, one of which is their complex mitochondrial genome, known as kinetoplast (k) DNA, composed of mutually catenated maxi- and minicircles. Trypanosoma lewisi is a member of the Stercorarian group of trypanosomes which is, based on human infections and experimental data, now considered a zoonotic pathogen. By assembling a total of 58 minicircle classes, which fall into two distinct categories, we describe a novel type of kDNA organization in T. lewisi. RNA-seq approaches allowed us to map the details of uridine insertion and deletion editing events upon the kDNA transcriptome. Moreover, sequencing of small RNA molecules enabled the identification of 169 unique guide (g) RNA genes, with two differently organized minicircle categories both encoding essential gRNAs. The unprecedented organization of minicircles and gRNAs in T. lewisi broadens our knowledge of the structure and expression of the mitochondrial genomes of these human and animal pathogens. Finally, a scenario describing the evolution of minicircles is presented.
- MeSH
- adenosintrifosfatasy genetika MeSH
- editace RNA MeSH
- fylogeneze MeSH
- genom mitochondriální MeSH
- guide RNA, Kinetoplastida genetika MeSH
- mitochondrie genetika MeSH
- podjednotky proteinů genetika MeSH
- protozoální DNA genetika MeSH
- RNA protozoální genetika MeSH
- Trypanosoma lewisi genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- guide RNA, Kinetoplastida MeSH
- podjednotky proteinů MeSH
- protozoální DNA MeSH
- RNA protozoální MeSH
The insufficient standardization of diagnostic next-generation sequencing (NGS) still limits its implementation in clinical practice, with the correct detection of mutations at low variant allele frequencies (VAF) facing particular challenges. We address here the standardization of sequencing coverage depth in order to minimize the probability of false positive and false negative results, the latter being underestimated in clinical NGS. There is currently no consensus on the minimum coverage depth, and so each laboratory has to set its own parameters. To assist laboratories with the determination of the minimum coverage parameters, we provide here a user-friendly coverage calculator. Using the sequencing error only, we recommend a minimum depth of coverage of 1,650 together with a threshold of at least 30 mutated reads for a targeted NGS mutation analysis of ≥3% VAF, based on the binomial probability distribution. Moreover, our calculator also allows adding assay-specific errors occurring during DNA processing and library preparation, thus calculating with an overall error of a specific NGS assay. The estimation of correct coverage depth is recommended as a starting point when assessing thresholds of NGS assay. Our study also points to the need for guidance regarding the minimum technical requirements, which based on our experience should include the limit of detection (LOD), overall NGS assay error, input, source and quality of DNA, coverage depth, number of variant supporting reads, and total number of target reads covering variant region. Further studies are needed to define the minimum technical requirements and its reporting in diagnostic NGS.
- Klíčová slova
- TP53 gene, coverage depth calculator, next-generation sequencing, sequencing error, small subclones, variant allele frequency (VAF),
- Publikační typ
- časopisecké články MeSH
Gnetum is a small, unique group of Gnetophyta with a controversial phylogenetic position. Gnetum parvifolium is an important Chinese traditional medicinal plant, which is rich in bioactive compounds such as flavonoids and stilbenoids. These compounds provide significant medicinal effects, mostly as antioxidant, anticancer, and antibacterial agents. However, the mechanisms involved in the biosynthesis and regulation of these compounds in G. parvifolium are still unknown. In this study, we found that flavonoids and stilbene compounds accumulated at different levels in various tissues of G. parvifolium. We further obtained and analyzed massive sequence information from pooled samples of G. parvifolium by transcriptome sequencing, which generated 94,816 unigenes with an average length of 724 bp. Functional annotation of all these unigenes revealed that many of them were associated with several important secondary metabolism pathways including flavonoids and stilbenoids. In particular, several candidate unigenes (PAL-, C4H-, 4CL-, and STS-like genes) involved in stilbenoids biosynthesis were highly expressed in leaves and mature fruits. Furthermore, high temperature and UV-C strongly induced the expression of these genes and enhanced stilbene production (i.e., resveratrol and piceatannol) in leaves of young seedlings. Our present transcriptomic and biochemical data on secondary metabolites in G. parvifolium should encourage further investigation on evolution, ecology, functional genomics, and breeding of this plant with strong pharmaceutical potential.
- Klíčová slova
- Gnetophyta, Gnetum, evolution, gene expression, natural bioactive compounds,
- Publikační typ
- časopisecké články MeSH
The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga.
- Klíčová slova
- Chromera velia, Vitrella brassicaformis, evolution of parasitism, evolutionary biology, genomics, infectious disease, malaria, microbiology, toxoplasmosis,
- MeSH
- Alveolata genetika MeSH
- DNA řas chemie genetika MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- sekvenční analýza DNA * MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA řas MeSH