Most cited article - PubMed ID 22842584
In vitro inhibition of mitochondrial respiratory rate by antidepressants
The neurotoxicity of phosphorylated tau protein (P-tau) and mitochondrial dysfunction play a significant role in the pathophysiology of Alzheimer's disease (AD). In vitro studies of the effects of P-tau oligomers on mitochondrial bioenergetics and reactive oxygen species production will allow us to evaluate the direct influence of P-tau on mitochondrial function. We measured the in vitro effect of P-tau oligomers on oxygen consumption and hydrogen peroxide production in isolated brain mitochondria. An appropriate combination of specific substrates and inhibitors of the phosphorylation pathway enabled the measurement and functional analysis of the effect of P-tau on mitochondrial respiration in defined coupling control states achieved in complex I-, II-, and I&II-linked electron transfer pathways. At submicromolar P-tau concentrations, we found no significant effect of P-tau on either mitochondrial respiration or hydrogen peroxide production in different respiratory states. The titration of P-tau showed a nonsignificant dose-dependent decrease in hydrogen peroxide production for complex I- and I&II-linked pathways. An insignificant in vitro effect of P-tau oligomers on both mitochondrial respiration and hydrogen peroxide production indicates that P-tau-induced mitochondrial dysfunction in AD is not due to direct effects of P-tau on the efficiency of the electron transport chain and on the production of reactive oxygen species.
- Keywords
- Alzheimer’s disease, hydrogen peroxide, isolated mitochondria, mitochondrial dysfunction, phosphorylated tau, respiratory state,
- MeSH
- Cell Respiration MeSH
- Phosphorylation MeSH
- Rats MeSH
- Humans MeSH
- Mitochondria * metabolism MeSH
- Brain metabolism MeSH
- Hydrogen Peroxide * metabolism MeSH
- tau Proteins * metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Oxygen Consumption MeSH
- Electron Transport MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hydrogen Peroxide * MeSH
- tau Proteins * MeSH
- Reactive Oxygen Species MeSH
Mitochondrial dysfunction is involved in the pathophysiology of psychiatric and neurodegenerative disorders and can be used as a modulator and/or predictor of treatment responsiveness. Understanding the mitochondrial effects of antidepressants is important to connect mitochondria with their therapeutic and/or adverse effects. Pig brain-isolated mitochondria were used to evaluate antidepressant-induced changes in the activity of electron transport chain (ETC) complexes, monoamine oxidase (MAO), mitochondrial respiratory rate, and ATP. Bupropion, escitalopram, fluvoxamine, sertraline, paroxetine, and trazodone were tested. All tested antidepressants showed significant inhibition of complex I and IV activities at high concentrations (50 and 100 µmol/L); complex II + III activity was reduced by all antidepressants except bupropion. Complex I-linked respiration was reduced by escitalopram >> trazodone >> sertraline. Complex II-linked respiration was reduced only by bupropion. Significant positive correlations were confirmed between complex I-linked respiration and the activities of individual ETC complexes. MAO activity was inhibited by all tested antidepressants, with SSRIs causing a greater effect than trazodone and bupropion. The results indicate a probable association between the adverse effects of high doses of antidepressants and drug-induced changes in the activity of ETC complexes and the respiratory rate of mitochondria. In contrast, MAO inhibition could be linked to the antidepressant, procognitive, and neuroprotective effects of the tested antidepressants.
- Keywords
- ATP, antidepressants, mitochondrial respiration, monoamine oxidase, oxidative phosphorylation, reactive oxygen species,
- Publication type
- Journal Article MeSH
This determination of the mitochondrial effect of pharmacologically different antidepressants (agomelatine, ketamine and vortioxetine) was evaluated and quantified in vitro in pig brain-isolated mitochondria. We measured the activity of mitochondrial complexes, citrate synthase, malate dehydrogenase and monoamine oxidase, and the mitochondrial respiratory rate. Total hydrogen peroxide production and ATP production were assayed. The most potent inhibitor of all mitochondrial complexes and complex I-linked respiration was vortioxetine. Agomelatine and ketamine inhibited only complex IV activity. None of the drugs affected complex II-linked respiration, citrate synthase or malate dehydrogenase activity. Hydrogen peroxide production was mildly increased by agomelatine, which might contribute to increased oxidative damage and adverse effects at high drug concentrations. Vortioxetine significantly reduced hydrogen peroxide concentrations, which might suggest antioxidant mechanism activation. All tested antidepressants were partial MAO-A inhibitors, which might contribute to their antidepressant effect. We observed vortioxetine-induced MAO-B inhibition, which might be linked to decreased hydrogen peroxide formation and contribute to its procognitive and neuroprotective effects. Mitochondrial dysfunction could be linked to the adverse effects of vortioxetine, as vortioxetine is the most potent inhibitor of mitochondrial complexes and complex I-linked respiration. Clarifying the molecular interaction between drugs and mitochondria is important to fully understand their mechanism of action and the connection between their mechanisms and their therapeutic and/or adverse effects.
- Keywords
- ATP, agomelatine, antidepressants, ketamine, mitochondrial respiration, monoamine oxidase, oxidative phosphorylation, reactive oxygen species, vortioxetine,
- MeSH
- Antidepressive Agents pharmacology MeSH
- Citrate (si)-Synthase MeSH
- Ketamine * pharmacology MeSH
- Malate Dehydrogenase MeSH
- Monoamine Oxidase MeSH
- Hydrogen Peroxide MeSH
- Swine MeSH
- Electron Transport Complex I MeSH
- Vortioxetine pharmacology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- agomelatine MeSH Browser
- Antidepressive Agents MeSH
- Citrate (si)-Synthase MeSH
- Ketamine * MeSH
- Malate Dehydrogenase MeSH
- Monoamine Oxidase MeSH
- Hydrogen Peroxide MeSH
- Electron Transport Complex I MeSH
- Vortioxetine MeSH
Mitochondria are targets of newly synthesized drugs and being tested for the treatment of various diseases caused or accompanied by disruption of cellular bioenergetics. In drug development, it is necessary to test for drug-induced changes in mitochondrial enzyme activity that may be related to therapeutic or adverse drug effects. Measurement of drug effect on mitochondrial oxygen consumption kinetics and/or protective effects of drugs against calcium-induced inhibition of the mitochondrial respiration can be used for the study mitochondrial toxicity and neuroprotective effects of drugs. Supposing that the drug-induced inhibition of the mitochondrial respiratory rate and/or individual mitochondrial complexes is associated with adverse drug effects, the effects of drugs on mitochondrial respiration in isolated mitochondria allow selection of novel molecules that are relatively safe for mitochondrial toxicity.
- Keywords
- Drug development, High-resolution respirometry, Isolated mitochondria, Mitochondrial respiration, Mitochondrial toxicity, Pig brain,
- MeSH
- Mitochondria drug effects metabolism MeSH
- Brain cytology MeSH
- Swine MeSH
- Drug Evaluation, Preclinical instrumentation methods MeSH
- Electron Transport Complex I metabolism MeSH
- Electron Transport Complex III metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Electron Transport Complex I MeSH
- Electron Transport Complex III MeSH
The trends of novel AD therapeutics are focused on multitarget-directed ligands (MTDLs), which combine cholinesterase inhibition with additional biological properties such as antioxidant properties to positively affect neuronal energy metabolism as well as mitochondrial function. We examined the in vitro effects of 10 novel MTDLs on the activities of mitochondrial enzymes (electron transport chain complexes and citrate synthase), mitochondrial respiration, and monoamine oxidase isoform (MAO-A and MAO-B) activity. The drug-induced effects of 7-MEOTA-adamantylamine heterodimers (K1011, K1013, K1018, K1020, and K1022) and tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers (K1046, K1053, K1056, K1060, and K1065) were measured in pig brain mitochondria. Most of the substances inhibited complex I- and complex II-linked respiration at high concentrations; K1046, K1053, K1056, and K1060 resulted in the least inhibition of mitochondrial respiration. Citrate synthase activity was not significantly inhibited by the tested substances; the least inhibition of complex I was observed for compounds K1060 and K1053, while both complex II/III and complex IV activity were markedly inhibited by K1011 and K1018. MAO-A was fully inhibited by K1018 and K1065, and MAO-B was fully inhibited by K1053 and K1065; the other tested drugs were partial inhibitors of both MAO-A and MAO-B. The tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers K1046, K1053, and K1060 seem to be the most suitable molecules for subsequent in vivo studies. These compounds had balanced inhibitory effects on mitochondrial respiration, with low complex I and complex II/III inhibition and full or partial inhibition of MAO-B activity.
- Keywords
- Alzheimer’s disease, Cholinesterase inhibitors, Electron transport chain complexes, Mitochondrial respiration, Monoamine oxidase, Multitarget-directed ligands,
- MeSH
- Alzheimer Disease drug therapy MeSH
- Cell Respiration drug effects MeSH
- Energy Metabolism * drug effects MeSH
- Monoamine Oxidase Inhibitors pharmacology MeSH
- Mitochondria drug effects enzymology metabolism MeSH
- Monoamine Oxidase metabolism MeSH
- Swine MeSH
- Electron Transport Complex II metabolism MeSH
- Tacrine chemistry pharmacology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Monoamine Oxidase Inhibitors MeSH
- Monoamine Oxidase MeSH
- Electron Transport Complex II MeSH
- Tacrine MeSH
The evaluation of drug-induced mitochondrial impairment may be important in drug development as well as in the comprehension of molecular mechanisms of the therapeutic and adverse effects of drugs. The primary aim of this study was to investigate the effects of four drugs for treatment of depression (bupropion, fluoxetine, amitriptyline, and imipramine) and five drugs for bipolar disorder treatment (lithium, valproate, valpromide, lamotrigine, and carbamazepine) on cell energy metabolism. The in vitro effects of the selected psychopharmaca were measured in isolated pig brain mitochondria; the activities of citrate synthase (CS) and electron transport chain (ETC) complexes (I, II + III, and IV) and mitochondrial respiration rates linked to complex I and complex II were measured. Complex I was significantly inhibited by lithium, carbamazepine, fluoxetine, amitriptyline, and imipramine. The activity of complex IV was decreased after exposure to carbamazepine. The activities of complex II + III and CS were not affected by any tested drug. Complex I-linked respiration was significantly inhibited by bupropion, fluoxetine, amitriptyline, imipramine, valpromide, carbamazepine, and lamotrigine. Significant inhibition of complex II-linked respiration was observed after mitochondria were exposed to amitriptyline, fluoxetine, and carbamazepine. Our outcomes confirm the need to investigate the effects of drugs on both the total respiration rate and the activities of individual enzymes of the ETC to reveal the risk of adverse effects as well as to understand the molecular mechanisms leading to drug-induced changes in the respiratory rate. Our approach can be further replicated to study the mechanisms of action of newly developed drugs.
- Keywords
- Antidepressant, Citrate synthase, Electron transport chain complexes, Mitochondrial respiration, Mood-stabilizing drugs,
- MeSH
- Antidepressive Agents toxicity MeSH
- Antimanic Agents toxicity MeSH
- Cell Respiration drug effects MeSH
- Electron Transport Chain Complex Proteins metabolism MeSH
- Mitochondria drug effects metabolism MeSH
- Brain drug effects metabolism MeSH
- Oxidative Phosphorylation drug effects MeSH
- Subcellular Fractions MeSH
- Sus scrofa MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antidepressive Agents MeSH
- Antimanic Agents MeSH
- Electron Transport Chain Complex Proteins MeSH
Assessment of drug-induced mitochondrial dysfunctions is important in drug development as well as in the understanding of molecular mechanism of therapeutic or adverse effects of drugs. The aim of this study was to investigate the effects of three typical antipsychotics (APs) and seven atypical APs on mitochondrial bioenergetics. The effects of selected APs on citrate synthase, electron transport chain complexes (ETC), and mitochondrial complex I- or complex II-linked respiratory rate were measured using mitochondria isolated from pig brain. Complex I activity was decreased by chlorpromazine, haloperidol, zotepine, aripiprazole, quetiapine, risperidone, and clozapine. Complex II + III was significantly inhibited by zotepine, aripiprazole, quetiapine, and risperidone. Complex IV was inhibited by zotepine, chlorpromazine, and levomepromazine. Mitochondrial respiratory rate was significantly inhibited by all tested APs, except for olanzapine. Typical APs did not exhibit greater efficacy in altering mitochondrial function compared to atypical APs except for complex I inhibition by chlorpromazine and haloperidol. A comparison of the effects of APs on individual respiratory complexes and on the overall mitochondrial respiration has shown that mitochondrial functions may not fully reflect the disruption of complexes of ETC, which indicates AP-induced modulation of other mitochondrial proteins. Due to the complicated processes associated with mitochondrial activity, it is necessary to measure not only the effect of the drug on individual mitochondrial enzymes but also the respiration rate of the mitochondria or a similar complex process. The experimental approach used in the study can be applied to mitochondrial toxicity testing of newly developed drugs.
- Keywords
- Antipsychotics, Citrate synthase, Electron transport chain complexes, Mitochondrial respiration,
- MeSH
- Antipsychotic Agents toxicity MeSH
- Energy Metabolism drug effects MeSH
- Mitochondria drug effects pathology MeSH
- Brain drug effects metabolism MeSH
- Swine MeSH
- Electron Transport Complex I drug effects metabolism MeSH
- Electron Transport Complex II drug effects metabolism MeSH
- In Vitro Techniques MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Antipsychotic Agents MeSH
- Electron Transport Complex I MeSH
- Electron Transport Complex II MeSH
BACKGROUND: Mitochondrial dysfunctions are implicated in the pathophysiology of mood disorders. We measured and examined the following selected mitochondrial parameters: citrate synthase (CS) activity, electron transport system (ETS) complex (complexes I, II, and IV) activities, and mitochondrial respiration in blood platelets. PATIENTS AND METHODS: The analyses were performed for 24 patients suffering from a depressive episode of bipolar affective disorder (BD), compared to 68 patients with MDD and 104 healthy controls. BD and unipolar depression were clinically evaluated using well-established diagnostic scales and questionnaires. RESULTS: The CS, complex II, and complex IV activities were decreased in the depressive episode of BD patients; complex I and complex I/CS ratio were significantly increased compared to healthy controls. We observed significantly decreased complex II and CS activities in patients suffering from MDD compared to controls. Decreased respiration after complex I inhibition and increased residual respiration were found in depressive BD patients compared to controls. Physiological respiration and capacity of the ETS were decreased, and respiration after complex I inhibition was increased in MDD patients, compared to controls. Increased complex I activity can be a compensatory mechanism for decreased CS and complex II and IV activities. CONCLUSION: We can conclude that complex I and its abnormal activity contribute to the defects in cellular energy metabolism during a depressive episode of BD. The observed parameters could be used in a panel of biomarkers that could selectively distinguish BD depression from MDD and can be easily examined from blood elements.
- Keywords
- affective disorder, biomarker, mitochondrial enzyme, oxidative phosphorylation, platelet,
- Publication type
- Journal Article MeSH
Impairment of mitochondrial metabolism, particularly the electron transport chain (ETC), as well as increased oxidative stress might play a significant role in pathogenesis of Alzheimer's disease (AD). Some effects of drugs used for symptomatic AD treatment may be related to their direct action on mitochondrial function. In vitro effects of pharmacologically different cognitives (galantamine, donepezil, rivastigmine, 7-MEOTA, memantine) and nootropic drugs (latrepirdine, piracetam) were investigated on selected mitochondrial parameters: activities of ETC complexes I, II + III, and IV, citrate synthase, monoamine oxidase (MAO), oxygen consumption rate, and hydrogen peroxide production of pig brain mitochondria. Complex I activity was decreased by galantamine, donepezil, and memantine; complex II + III activity was increased by galantamine. None of the tested drugs caused significant changes in the rate of mitochondrial oxygen consumption, even at high concentrations. Except galantamine, all tested drugs were selective MAO-A inhibitors. Latrepirdine, donepezil, and 7-MEOTA were found to be the most potent MAO-A inhibitors. Succinate-induced mitochondrial hydrogen peroxide production was not significantly affected by the drugs tested. The direct effect of cognitives and nootropics used in the treatment of AD on mitochondrial respiration is relatively small. The safest drugs in terms of disturbing mitochondrial function appear to be piracetam and rivastigmine. The MAO-A inhibition by cognitives and nootropics may also participate in mitochondrial neuroprotection. The results support the future research aimed at measuring the effects of currently used drugs or newly synthesized drugs on mitochondrial functioning in order to understand their mechanism of action.
- Keywords
- Cognitives, Mitochondrial respiration, Monoamine oxidase, Nootropics, Reactive oxygen species,
- MeSH
- Alzheimer Disease metabolism MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Donepezil MeSH
- Galantamine metabolism MeSH
- Indans pharmacology MeSH
- Cognition drug effects MeSH
- Memantine pharmacology MeSH
- Mitochondria drug effects metabolism MeSH
- Monoamine Oxidase drug effects metabolism MeSH
- Brain drug effects metabolism MeSH
- Nootropic Agents pharmacology MeSH
- Piperidines pharmacology MeSH
- Swine MeSH
- Rivastigmine pharmacology MeSH
- Oxygen Consumption drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cholinesterase Inhibitors MeSH
- Donepezil MeSH
- Galantamine MeSH
- Indans MeSH
- Memantine MeSH
- Monoamine Oxidase MeSH
- Nootropic Agents MeSH
- Piperidines MeSH
- Rivastigmine MeSH
Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.
- MeSH
- Cell Death physiology MeSH
- Protein Conformation MeSH
- Humans MeSH
- Mitochondria metabolism physiology MeSH
- Molecular Sequence Data MeSH
- Mutagenesis, Site-Directed MeSH
- Electron Transport Complex II chemistry genetics metabolism physiology MeSH
- Amino Acid Sequence MeSH
- Ubiquinone chemistry genetics metabolism MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Electron Transport Complex II MeSH
- respiratory complex II MeSH Browser
- Ubiquinone MeSH