Nejvíce citovaný článek - PubMed ID 23193998
On the road from formamide ices to nucleobases: IR-spectroscopic observation of a direct reaction between cyano radicals and formamide in a high-energy impact event
In this study, we present a current state-of-the-art review of middle-to-near IR emission spectra of four simple astrophysically relevant molecular radicals-OH, NH, CN and CH. The spectra of these radicals were measured by means of time-resolved Fourier transform infrared spectroscopy in the 700-7500 cm-1 spectral range and with 0.07-0.02 cm-1 spectral resolution. The radicals were generated in a glow discharge of gaseous mixtures in a specially designed discharge cell. The spectra of short-lived radicals published here are of great importance, especially for the detailed knowledge and study of the composition of exoplanetary atmospheres in selected new planets. Today, with the help of the James Webb telescope and upcoming studies with the help of Plato and Ariel satellites, when the investigated spectral area is extended into the infrared spectral range, it means that detailed knowledge of the infrared spectra of not only stable molecules but also the spectra of short-lived radicals or ions, is indispensable. This paper follows a simple structure. Each radical is described in a separate chapter, starting with historical and actual theoretical background, continued by our experimental results and concluded by spectral line lists with assigned notation.
- Klíčová slova
- atmospheric chemistry, infrared spectra, radicals, short living radicals, spectroscopy, unstable species,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The search for the chemical origins of life represents a long-standing and continuously debated enigma. Despite its exceptional complexity, in the last decades the field has experienced a revival, also owing to the exponential growth of the computing power allowing for efficiently simulating the behavior of matter-including its quantum nature-under disparate conditions found, e.g., on the primordial Earth and on Earth-like planetary systems (i.e., exoplanets). In this minireview, we focus on some advanced computational methods capable of efficiently solving the Schro¨dinger equation at different levels of approximation (i.e., density functional theory)-such as ab initio molecular dynamics-and which are capable to realistically simulate the behavior of matter under the action of energy sources available in prebiotic contexts. In addition, recently developed metadynamics methods coupled with first-principles simulations are here reviewed and exploited to answer to old enigmas and to propose novel scenarios in the exponentially growing research field embedding the study of the chemical origins of life.
- Klíčová slova
- ab initio molecular dynamics, astrobiology, density functional theory, metadynamics, origins of life, prebiotic chemistry,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The large amount of unstable species in the realm of interstellar chemistry drives an urgent need to develop efficient methods for the in situ generations of molecules that enable their spectroscopic characterizations. Such laboratory experiments are fundamental to decode the molecular universe by matching the interstellar and terrestrial spectra. We propose an approach based on laser ablation of nonvolatile solid organic precursors. The generated chemical species are cooled in a supersonic expansion and probed by high-resolution microwave spectroscopy. We present a proof of concept through a simultaneous formation of interstellar compounds and the first generation of aminocyanoacetylene using diaminomaleonitrile as a prototypical precursor. With this micro-laboratory, we open the door to generation of unsuspected species using precursors not typically accessible to traditional techniques such as electric discharge and pyrolysis.
- Klíčová slova
- chemical synthesis, interstellar medium, laser ablation, molecular generation, rotational spectroscopy,
- Publikační typ
- časopisecké články MeSH
Recent results in prebiotic chemistry implicate hydrogen cyanide (HCN) as the source of carbon and nitrogen for the synthesis of nucleotide, amino acid and lipid building blocks. HCN can be produced during impact events by reprocessing of carbonaceous and nitrogenous materials from both the impactor and the atmosphere; it can also be produced from these materials by electrical discharge. Here we investigate the effect of high energy events on a range of starting mixtures representative of various atmosphere-impactor volatile combinations. Using continuously scanning time-resolved spectrometry, we have detected ·CN radical and excited CO as the initially most abundant products. Cyano radicals and excited carbon monoxide molecules in particular are reactive, energy-rich species, but are resilient owing to favourable Franck-Condon factors. The subsequent reactions of these first formed excited species lead to the production of ground-state prebiotic building blocks, principally HCN.
- MeSH
- atmosféra * MeSH
- dusík chemie MeSH
- kyanovodík chemie MeSH
- oxid uhelnatý chemie MeSH
- prebiotika * MeSH
- uhlík chemie MeSH
- Země (planeta) * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- kyanovodík MeSH
- oxid uhelnatý MeSH
- prebiotika * MeSH
- uhlík MeSH
The Miller-Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results.
- Klíčová slova
- asteroid impact, life origins, reducing atmosphere,
- MeSH
- amoniak chemie MeSH
- atmosféra MeSH
- chemické modely MeSH
- evoluce chemická MeSH
- formamidy chemie MeSH
- oxid uhelnatý chemie MeSH
- oxidace-redukce MeSH
- původ života MeSH
- RNA chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- formamide MeSH Prohlížeč
- formamidy MeSH
- oxid uhelnatý MeSH
- RNA MeSH
Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth's history about 4-3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde.
- MeSH
- arabinosa chemická syntéza MeSH
- dimerizace MeSH
- formaldehyd chemie MeSH
- katalýza MeSH
- planetární evoluce MeSH
- původ života MeSH
- ribosa chemická syntéza MeSH
- sacharidy chemická syntéza MeSH
- titan chemie MeSH
- xylosa chemická syntéza MeSH
- Země (planeta) MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arabinosa MeSH
- formaldehyd MeSH
- formose sugars MeSH Prohlížeč
- ribosa MeSH
- sacharidy MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
- xylosa MeSH
The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules.
- Klíčová slova
- LIDB, asteroid impact, biomolecules, origin of life,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH