Nejvíce citovaný článek - PubMed ID 24528638
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Leuconeurospora bharatiensis from accumulated snow sediment sample. Argentina, Pseudocercospora quetri on leaf spots of Luma apiculata. Australia, Polychaetomyces verrucosus on submerged decaying wood in sea water, Ustilaginoidea cookiorum on Scleria levis, Xylaria guardiae as endophyte from healthy leaves of Macaranga tanarius. Belgium, Iodophanus taxi on leaf of Taxus baccata. Belize, Hygrocybe mirabilis on soil. Brazil, Gongronella irregularis from soil, Linodochium splendidum on decaying sheath of Euterpe oleracea, Nothophysalospora agapanthi (incl. Nothophysalospora gen. nov.) on flower stalks of Agapanthus praecox, Phaeosphaeria tabebuiae on leaf of Tabebuia sp., Verrucohypha endophytica (incl. Verrucohypha gen. nov.) from healthy roots of Acrocomia aculeata. Estonia, Inosperma apricum on soil under Quercus robur. Greece, Monosporascus solitarius isolated from surface-sterilised, asymptomatic roots of Microthlaspi perfoliatum. India, Diaporthe neocapsici on young seedling stems of Capsicum annuum, Fuscoporia naditirana on dead wood, Sebacina spongicarpa on soil, Torula kanvae from the gut of a Copris signatus beetle. Iran, Sarcinomyces pruni from twig and petiole tissues of Prunus persica and Prunus armeniaca, Xenodidymella quercicola from leaf spots of Quercus brantii. Italy, Agaricus aereiceps on grass, Agaricus bellui in meadows, Agaricus fabrianensis in urban grasslands, Beaucarneamyces muscorum on moss growing in forest, Xenoanthostomella quercus on leaf litter of Quercus ilex. Netherlands, Alfaria neerlandica on stem lesions of Cortaderia selloana, Neodictyosporium juncicola on culms of Juncus maritimus, Penicillium geertdesnooi from soil under Papaver rhoeas, Russula abscondita on rich calcareous soil with Quercus, Russula multiseptata on rich clay soil with Quercus, Russula purpureopallescens on soil with Populus, Sarocladium caricicola on leaves of Carex riparia. Pakistan, Circinaria shimlaensis on limestone rocks. Panama, Acrocalymma philodendri on leaf spots of Philodendron sp., Caligospora panamaensis on leaf litter, Chlamydocillium simulans associated with a Xylaria sp., Corynesporina panamaensis on leaf litter, Cylindromonium panamaense on twig litter of angiosperm, Cyphellophora panamaensis on twig litter of angiosperm, Microcera panamensis on leaf litter of fern, Pseudotricholoma pusillum in tropical montane forest dominated by Quercus spp., Striaticonidium panamaense on leaf litter, Yunnanomyces panamaensis on leaf litter. Poland, Albocremella abscondita (incl. Albocremella gen. nov.) from rhizoids of liverwort Conocephalum salebrosum. Portugal, Agaricus occidualis in meadows. South Africa, Alternaria elsarustiae on culms of unidentified Poaceae, Capronia capensis on dead twig of unidentified angiosperm, Codinaeella bulbinicola on dead leaves of Bulbine frutescens, Cytospora carpobroticola on leaf of Carpobrotus quadrifidus, Neophaeomoniella watsoniae on leaf of Watsonia sp., Neoplatysporoides aloigena on leaf of Aloe khamiesensis, Nothodactylaria comitabilis on living leaf of Itea rhamnoides, Nothopenidiella beaucarneae (incl. Nothopenidiella gen. nov.) on dead leaves of Beaucarnea stricta, Orbilia kirstenboschensis on dead flower stalks of Agapanthus praecox, Phragmocephala agapanthi on dead flower stalks of Agapanthus praecox, Podocarpigena hagahagaensis (incl. Podocarpigena gen. nov.) on leaf spots of Podocarpus falcatus, Sporisorium enterogonipteri from the gut of Gonipterus sp., Synnemapestaloides searsiae on leaf of Searsia populifolia, Xenophragmocapnias diospyri (incl. Xenophragmocapnias gen. nov.) on leaf spots of Diospyros sp., Yunnanomyces hagahagaensis on leaf spots of Sideroxylon inerme. Spain, Agaricus basicinctus in meadows, Agaricus quercetorum among leaf litter in oak forests, Coprinopsis palaciosii on degraded woody debris, Inocybe complutensis in calcareous loamy soil, Inocybe tanitiae in calcareous sandy soil, Mycena subfragosa on dead leaves of Salix atrocinerea, Pseudobaeospora cortegadensis in laurel forests, Trichoderma sedimenticola from fluvial sediments. Sweden, Inocybe badjelanndana on calcareous soil. Ukraine, Beaucarneamyces lupini on overwintered stems of Lupinus polyphyllus, Protocreopsis globulosa on thallus and apothecia of Lecania cyrtella on bark of Populus sp., Thyridium tiliae on dead twigs of Tilia sp. USA, Cladosporium louisianense, Cyphellophora americana from a bedroom vent, Extremus massachusettsianus from lyse buffer, Myxotrichum tapetae on carpet in basement, Neospissiomyces floridanus (incl. Neospissiomyces gen. nov.) on swab from hospital, Polychaetomyces marinus (incl. Polychaetomyces gen. nov.) on submerged driftwood in sea water, Steccherinum fragrans on hardwood fallen on the beach, Steinbeckomyces carnegieae (incl. Steinbeckomyces gen. nov.) on Carnegiea gigantea, Tolypocladium pennsylvanicum from air sampled in basement. Vietnam, Acidomyces ducanhii from Aglaia flowers, Acidomyces paludis from dead bark of Acacia sp., Phakopsora sageretiae on Sageretia theezans, Puccinia stixis on Stixis scandens. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Wingfield MJ, Jurjević Ž, et al. (2024). Fungal Planet description sheets: 1697-1780. Fungal Systematics and Evolution 14: 325-577. doi: 10.3114/fuse.2024.14.19.
- Klíčová slova
- ITS nrDNA barcodes, LSU, new taxa, systematics,
- Publikační typ
- časopisecké články MeSH
Most of our knowledge on the ericoid mycorrhizal (ErM) symbiosis comes from temperate heathlands characterized by acidic peaty soils and many experiments with a few ascomycetous fungi. However, ericaceous plants thrive in many other ecosystems and in temperate coniferous forests, their seedlings often prosper on decomposing wood. While wood is typically exploited by basidiomycetous ectomycorrhizal (EcM) and saprobic fungi, the role of ErM fungi (ErMF) is much less clear. We explored the cultivable mycobiota of surface sterilized hair roots of Vaccinium spp. growing on decomposing wood in two coniferous forests in Mid-Norway (Scandinavia) and Northern Bohemia (Central Europe). Obtained isolates were identified using molecular tools and their symbiotic potential was tested in vitro. While the detected community lacked the archetypal ErMF Hyaloscypha hepaticicola and the incidence of dark septate endophytes and EcM fungi was negligible, it comprised other frequent asexual ascomycetous ErMF, namely H. variabilis and Oidiodendron maius, together with several isolates displaying affinities to sexual saprobic H. daedaleae and H. fuckelii. Ascomycete-suppressing media revealed representatives of the saprobic basidiomycetous genera Coprinellus, Gymnopilus, Mycena (Agaricales), and Hypochnicium (Polyporales). In the resyntheses, the tested basidiomycetes occasionally penetrated the rhizodermal cells of their hosts but never formed ericoid mycorrhizae and in many cases overgrew and killed the inoculated seedlings. In contrast, a representative of the H. daedaleae/H. fuckelii-related isolates repeatedly formed what morphologically appears as the ErM symbiosis and supported host's growth. In conclusion, while basidiomycetous saprobic fungi have a potential to colonize healthy-looking ericaceous hair roots, the mode(-s) of their functioning remain obscure. For the first time, a lineage in Hyaloscypha s. str. (corresponding to the former Hymenoscyphus ericae aggregate) where sexual saprobes are intermingled with root symbionts has been revealed, shedding new light on the ecology and evolution of these prominent ascomycetous ErMF.
- Klíčová slova
- Agaricales, Ericoid mycorrhiza, Hyaloscypha, Mycena, Root-associated fungi, Saprobic fungi,
- MeSH
- Agaricales * MeSH
- Basidiomycota * MeSH
- dřevo MeSH
- ekosystém MeSH
- Ericaceae * mikrobiologie MeSH
- kořeny rostlin mikrobiologie MeSH
- mykorhiza * MeSH
- symbióza MeSH
- Vaccinium * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
Historically, Hyaloscypha s. lat. (Hyaloscyphaceae, Helotiales) included various saprobes with small apothecia formed on decaying plant matter, usually wood, that were defined by chemical and (ultra)structural aspects. However, recent molecular phylogenetic and resynthesis studies have narrowed the concept of the genus and shown that it contains several widely distributed species with unknown sexual morphs that form ectomycorrhizae, ericoid mycorrhizae, and mycothalli and also grow endophytically in plant roots and hypogeous ectomycorrhizal (EcM) fruitbodies (i.e., the historical Hymenoscyphus ericae aggregate). Hence, some of the sexually reproducing saprobic Hyaloscypha s. lat. and the symbionts belong to the monophyletic Hyaloscypha s. str. Here, we introduce two new root-symbiotic Hyaloscypha s. str. species, i.e., H. gabretae and H. gryndleri spp. nov. While the former was isolated only from ericaceous hosts (Vaccinium myrtillus from Southern Bohemia, Czechia and Calluna vulgaris from England, UK), the latter was obtained from a basidiomycetous EcM root tip of Picea abies (Pinaceae), roots of Pseudorchis albida (Orchidaceae), and hair roots of V. myrtillus from Southern Bohemia and C. vulgaris from England. Hyaloscypha gryndleri comprises two closely related lineages, suggesting ongoing speciation, possibly connected with the root-symbiotic life-style. Fungal isolates from ericaceous roots with sequences similar to H. gabretae and H. gryndleri have been obtained in Japan and in Canada and Norway, respectively, suggesting a wide and scattered distribution across the Northern Hemisphere. In a series of in vitro experiments, both new species failed to form orchid mycorrhizal structures in roots of P. albida and H. gryndleri repeatedly formed what morphologically corresponds to the ericoid mycorrhizal (ErM) symbiosis in hair roots of V. myrtillus, whereas the ErM potential of H. gabretae remained unresolved. Our results highlight the symbiotic plasticity of root-associated hyaloscyphoid mycobionts as well as our limited knowledge of their diversity and distribution, warranting further ecophysiological and taxonomic research of these important and widespread fungi.
- Klíčová slova
- Core Ericaceae, Ericoid mycorrhizal fungi, Hyaloscypha hepaticicola, Hymenoscyphus ericae, Meliniomyces, Pezoloma ericae, Rhizoscyphus ericae, Root symbiotic fungi,
- MeSH
- Ascomycota * MeSH
- cévnaté rostliny * MeSH
- fylogeneze MeSH
- kořeny rostlin MeSH
- mykorhiza * genetika MeSH
- Publikační typ
- časopisecké články MeSH
Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies. Russia, Bolbitius sibiricus on à moss covered rotting trunk of Populus tremula, Crepidotus wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina. Slovakia, Hygrocybe fulgens on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa, Acrodontium burrowsianum on leaves of unidentified Poaceae, Castanediella senegaliae on dead pods of Senegalia ataxacantha, Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia sp., Diatrype dalbergiae on bark of Dalbergia armata, Falcocladium heteropyxidicola on leaves of Heteropyxis canescens, Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum, Lasionectria sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides, Lylea dalbergiae on Diatrype dalbergiae on bark of Dalbergia armata, Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on leaves of Syzygium chordatum, Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of Ekebergia pterophylla, Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia ingens, Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis, Paramycosphaerella syzygii on leaf litter of Syzygium chordatum, Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix reclinata, Seiridium syzygii on twigs of Syzygium chordatum, Setophoma syzygii on leaves of Syzygium sp., Starmerella xylocopis from larval feed of an Afrotropical bee Xylocopa caffra, Teratosphaeria combreti on leaf litter of Combretum kraussii, Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi on pods of Pterocarpus angolensis. Spain, Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden, Elaphomyces borealis on soil under Pinus sylvestris and Betula pubescens. Tanzania, Curvularia tanzanica on inflorescence of Cyperus aromaticus. Thailand, Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA, Calonectria californiensis on leaves of Umbellularia californica, Exophiala spartinae from surface sterilised roots of Spartina alterniflora, Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam, Fistulinella aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Cowan DA, Maggs-Kölling, et al. 2021. Fungal Planet description sheets: 1182-1283. Persoonia 46: 313-528. https://doi.org/10.3767/persoonia.2021.46.11.
- Klíčová slova
- ITS nrDNA barcodes, LSU, new taxa, systematics,
- Publikační typ
- časopisecké články MeSH
The newly discovered systematic placement of Bactrodesmium abruptum, the lectotype species of the genus, prompted a re-evaluation of the traditionally broadly conceived genus Bactrodesmium. Fresh material, axenic cultures and new DNA sequence data of five gene regions of six species, i.e. B. abruptum, B. diversum, B. leptopus, B. obovatum, B. pallidum and B. spilomeum, were studied. Bactrodesmium is a strongly resolved lineage in the Savoryellales (Sordariomycetes), supported by Bayesian and Maximum Likelihood methods. The genus Bactrodesmium is emended and delimited to hyphomycetes characterised by sporodochial conidiomata, mononematous often fasciculate conidiophores, holoblastic conidiogenesis and acrogenous, solitary, dry, pigmented, transversely or rarely longitudinally septate conidia. The conidia are seceding rhexolytically, exhibiting multiple secession patterns. An identification key to 35 species accepted in Bactrodesmium is given, providing the most important diagnostic characters. Novel DNA sequence data of B. longisporum and B. stilboideum confirmed their placement in the Sclerococcales (Eurotiomycetes). For other Bactrodesmium, molecular data are available for B. cubense and B. gabretae, which position them in the Dothideomycetes and Leotiomycetes, respectively. All four species are excluded from Bactrodesmium and segregated into new genera, Aphanodesmium, Gamsomyces and Kaseifertia. Classification of 20 other species and varieties not recognised in the genus is discussed. Based on new collections of Dematiosporium aquaticum, the type species of Dematiosporium, the genus is emended to accommodate monodictys-like freshwater lignicolous fungi of the Savoryellales characterised by effuse colonies, holoblastic conidiogenous cells and dictyosporous, pigmented conidia with a pore in each cell. Study of additional new collections, cultures and DNA sequence data revealed several unknown species, which are proposed as taxonomic novelties in the Savoryellales and closely related Pleurotheciales. Ascotaiwania latericolla, Helicoascotaiwania lacustris and Pleurotheciella erumpens are described from terrestrial, lentic and lotic habitats from New Zealand and France, respectively. New combinations are proposed for Helicoascotaiwania farinosa and Neoascotaiwania fusiformis. Relationships and systematics of the Savoryellales are discussed in the light of recent phylogenies and morphological patterns newly linked with the order through cultural studies.
- Klíčová slova
- 12 taxonomic novelties, Aphanodesmium Réblová & Hern.-Restr., Aphanodesmium gabretae (Koukol & Kolářová) Réblová & Hern.-Restr., Ascotaiwania latericolla Réblová, Hern.-Restr. & J. Fourn., Conidial secession, Conidiogenesis, Gamsomyces Hern.-Restr. & Réblová, Gamsomyces longisporus (M.B. Ellis) Hern.-Restr. & Réblová, Gamsomyces stilboideus (R.F. Castañeda & G.R.W. Arnold) Hern.-Restr. & Réblová, Helicoascotaiwania farinosa (Linder) Réblová, Hern.-Restr. & J. Fourn., Helicoascotaiwania lacustris Réblová & J. Fourn., Kaseifertia Réblová, Hern.-Restr. & J. Fourn, Kaseifertia cubense (R.F. Castañeda & G.R.W. Arnold) Réblová, Hern.-Restr. & J. Fourn., Molecular systematics, Neoascotaiwania fusiformis (Jing Yang, Bhat & K.D. Hyde) Réblová, Hern.-Restr. & J. Fourn, Pleurotheciella erumpens Réblová & J. Fourn, Sporodochium, Synnema, Wood-inhabiting fungi,
- Publikační typ
- časopisecké články MeSH
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.
- Klíčová slova
- ITS nrDNA barcodes, LSU, new taxa, systematics,
- Publikační typ
- časopisecké články MeSH
Fungi in the class Leotiomycetes are ecologically diverse, including mycorrhizas, endophytes of roots and leaves, plant pathogens, aquatic and aero-aquatic hyphomycetes, mammalian pathogens, and saprobes. These fungi are commonly detected in cultures from diseased tissue and from environmental DNA extracts. The identification of specimens from such character-poor samples increasingly relies on DNA sequencing. However, the current classification of Leotiomycetes is still largely based on morphologically defined taxa, especially at higher taxonomic levels. Consequently, the formal Leotiomycetes classification is frequently poorly congruent with the relationships suggested by DNA sequencing studies. Previous class-wide phylogenies of Leotiomycetes have been based on ribosomal DNA markers, with most of the published multi-gene studies being focussed on particular genera or families. In this paper we collate data available from specimens representing both sexual and asexual morphs from across the genetic breadth of the class, with a focus on generic type species, to present a phylogeny based on up to 15 concatenated genes across 279 specimens. Included in the dataset are genes that were extracted from 72 of the genomes available for the class, including 10 new genomes released with this study. To test the statistical support for the deepest branches in the phylogeny, an additional phylogeny based on 3156 genes from 51 selected genomes is also presented. To fill some of the taxonomic gaps in the 15-gene phylogeny, we further present an ITS gene tree, particularly targeting ex-type specimens of generic type species. A small number of novel taxa are proposed: Marthamycetales ord. nov., and Drepanopezizaceae and Mniaeciaceae fams. nov. The formal taxonomic changes are limited in part because of the ad hoc nature of taxon and specimen selection, based purely on the availability of data. The phylogeny constitutes a framework for enabling future taxonomically targeted studies using deliberate specimen selection. Such studies will ideally include designation of epitypes for the type species of those genera for which DNA is not able to be extracted from the original type specimen, and consideration of morphological characters whenever genetically defined clades are recognized as formal taxa within a classification.
- Klíčová slova
- Chaetomellales, Erysiphales, Genome phylogeny, Helotiales, Leotiales, Marthamycetales, Phacidiales, Rhytismatales, Thelebolales, Three new taxa,
- Publikační typ
- časopisecké články MeSH
Data mining for a phylogenetic study including the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae revealed nearly identical ITS sequences of the bryophilous Hyaloscypha hepaticicola suggesting they are conspecific. Additional genetic markers and a broader taxonomic sampling furthermore suggested that the sexual Hyaloscypha and the asexual Meliniomyces may be congeneric. In order to further elucidate these issues, type strains of all species traditionally treated as members of the Rhizoscyphus ericae aggregate (REA) and related taxa were subjected to phylogenetic analyses based on ITS, nrLSU, mtSSU, and rpb2 markers to produce comparable datasets while an in vitro re-synthesis experiment was conducted to examine the root-symbiotic potential of H. hepaticicola in the Ericaceae. Phylogenetic evidence demonstrates that sterile root-associated Meliniomyces, sexual Hyaloscypha and Rhizoscyphus, based on R. ericae, are indeed congeneric. To this monophylum also belongs the phialidic dematiaceous hyphomycetes Cadophora finlandica and Chloridium paucisporum. We provide a taxonomic revision of the REA; Meliniomyces and Rhizoscyphus are reduced to synonymy under Hyaloscypha. Pseudaegerita, typified by P. corticalis, an asexual morph of H. spiralis which is a core member of Hyaloscypha, is also transferred to the synonymy of the latter genus. Hyaloscypha melinii is introduced as a new root-symbiotic species from Central Europe. Cadophora finlandica and C. paucisporum are confirmed conspecific, and four new combinations in Hyaloscypha are proposed. Based on phylogenetic analyses, some sexually reproducing species can be attributed to their asexual counterparts for the first time whereas the majority is so far known only in the sexual or asexual state. Hyaloscypha bicolor sporulating in vitro is reported for the first time. Surprisingly, the mycological and mycorrhizal sides of the same coin have never been formally associated, mainly because the sexual and asexual morphs of these fungi have been studied in isolation by different research communities. Evaluating all these aspects allowed us to stabilize the taxonomy of a widespread and ecologically well-studied group of root-associated fungi and to link their various life-styles including saprobes, bryophilous fungi, root endophytes as well as fungi forming ericoid mycorrhizae and ectomycorrhizae.
- Klíčová slova
- Ectomycorrhiza, Ericoid mycorrhiza, Hyaloscypha bicolor (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hyaloscypha finlandica (C.J.K. Wang & H.E. Wilcox) Vohník, Fehrer & Réblová, Hyaloscypha hepaticicola, Hyaloscypha melinii Vohník, Fehrer & Réblová, Hyaloscypha variabilis (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hyaloscypha vraolstadiae (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hymenoscyphus ericae, Meliniomyces, Molecular systematics, Mycorrhizal synthesis, Pezoloma ericae, Pseudaegerita, Sexual-asexual connection,
- Publikační typ
- časopisecké články MeSH