Nejvíce citovaný článek - PubMed ID 24797473
Primary cilium projects from cells to provide a communication platform with neighboring cells and the surrounding environment. This is ensured by the selective entry of membrane receptors and signaling molecules, producing fine-tuned and effective responses to the extracellular cues. In this study, we focused on one family of signaling molecules, the fibroblast growth factor receptors (FGFRs), their residence within cilia, and its role in FGFR signaling. We show that FGFR1 and FGFR2, but not FGFR3 and FGFR4, localize to primary cilia of the developing mouse tissues and in vitro cells. For FGFR2, we demonstrate that the ciliary residence is necessary for its signaling and expression of target morphogenic genes. We also show that the pathogenic FGFR2 variants have minimal cilium presence, which can be rescued for the p.P253R variant associated with the Apert syndrome by using the RLY-4008 kinase inhibitor. Finally, we determine the molecular regulators of FGFR2 trafficking to cilia, including IFT144, BBS1, and the conserved T429V430 motif within FGFR2.
- MeSH
- cilie * metabolismus genetika MeSH
- epitelové buňky * metabolismus MeSH
- lidé MeSH
- myši MeSH
- receptor fibroblastových růstových faktorů, typ 1 metabolismus genetika MeSH
- receptor fibroblastových růstových faktorů, typ 2 * metabolismus genetika MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- FGFR2 protein, human MeSH Prohlížeč
- Fgfr2 protein, mouse MeSH Prohlížeč
- receptor fibroblastových růstových faktorů, typ 1 MeSH
- receptor fibroblastových růstových faktorů, typ 2 * MeSH
Cilia or eukaryotic flagella are microtubule-based organelles found across the eukaryotic tree of life. Their very high aspect ratio and crowded interior are unfavorable to diffusive transport of most components required for their assembly and maintenance. Instead, a system of intraflagellar transport (IFT) trains moves cargo rapidly up and down the cilium (Figure 1A).1-3 Anterograde IFT, from the cell body to the ciliary tip, is driven by kinesin-II motors, whereas retrograde IFT is powered by cytoplasmic dynein-1b motors.4 Both motors are associated with long chains of IFT protein complexes, known as IFT trains, and their cargoes.5-8 The conversion from anterograde to retrograde motility at the ciliary tip involves (1) the dissociation of kinesin motors from trains,9 (2) a fundamental restructuring of the train from the anterograde to the retrograde architecture,8,10,11 (3) the unloading and reloading of cargo,2 and (4) the activation of the dynein motors.8,12 A prominent hypothesis is that there is dedicated calcium-dependent protein-based machinery at the ciliary tip to mediate these processes.4,13 However, the mechanisms of IFT turnaround have remained elusive. In this study, we use mechanical and chemical methods to block IFT at intermediate positions along the cilia of the green algae Chlamydomonas reinhardtii, in normal and calcium-depleted conditions. We show that IFT turnaround, kinesin dissociation, and dynein-1b activation can consistently be induced at arbitrary distances from the ciliary tip, with no stationary tip machinery being required. Instead, we demonstrate that the anterograde-to-retrograde conversion is a calcium-independent intrinsic ability of IFT.
- Klíčová slova
- TIRF microscopy, cilia and flagella, ciliary tip, intraflagellar transport, micromanipulator, total-internal reflection microscopy,
- MeSH
- biologický transport MeSH
- cilie metabolismus MeSH
- cytoplazmatické dyneiny metabolismus MeSH
- dyneiny * metabolismus MeSH
- flagella fyziologie MeSH
- kineziny * MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytoplazmatické dyneiny MeSH
- dyneiny * MeSH
- kineziny * MeSH
- vápník MeSH
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
- Klíčová slova
- FGFR, FGFR fusion, cancer, centrosome, centrosome cycle, cilia, fibroblast growth factor receptor, neoplastic transformation, oncogenic driver, primary cilia,
- MeSH
- centrozom metabolismus MeSH
- cilie * metabolismus patologie MeSH
- lidé MeSH
- nádorová transformace buněk patologie MeSH
- nádory * metabolismus patologie MeSH
- onkogenní fúze MeSH
- receptory fibroblastových růstových faktorů metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- receptory fibroblastových růstových faktorů MeSH
Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.
- Klíčová slova
- FGFR, ICK, cilia length, fibroblast growth factor, intestinal cell kinase,
- MeSH
- buňky NIH 3T3 MeSH
- cilie metabolismus MeSH
- CRISPR-Cas systémy MeSH
- fibroblastové růstové faktory metabolismus MeSH
- fosforylace MeSH
- HEK293 buňky MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- modely u zvířat MeSH
- myši knockoutované MeSH
- myši MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- proteiny hedgehog metabolismus MeSH
- proteomika MeSH
- receptor fibroblastových růstových faktorů, typ 1 metabolismus MeSH
- receptor fibroblastových růstových faktorů, typ 3 genetika metabolismus MeSH
- receptor fibroblastových růstových faktorů, typ 4 metabolismus MeSH
- receptory fibroblastových růstových faktorů genetika metabolismus MeSH
- signální transdukce MeSH
- simulace molekulového dockingu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- CILK1 protein, human MeSH Prohlížeč
- Cilk1 protein, mouse MeSH Prohlížeč
- FGFR1 protein, human MeSH Prohlížeč
- FGFR3 protein, human MeSH Prohlížeč
- FGFR4 protein, human MeSH Prohlížeč
- fibroblastové růstové faktory MeSH
- protein-serin-threoninkinasy MeSH
- proteiny hedgehog MeSH
- receptor fibroblastových růstových faktorů, typ 1 MeSH
- receptor fibroblastových růstových faktorů, typ 3 MeSH
- receptor fibroblastových růstových faktorů, typ 4 MeSH
- receptory fibroblastových růstových faktorů MeSH
The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities. Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia function in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homozygosity for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.
- MeSH
- cilie genetika patologie MeSH
- exom genetika MeSH
- kojenec MeSH
- kostra abnormality růst a vývoj MeSH
- lidé MeSH
- MAP kinasový signální systém MeSH
- mnohočetné abnormality genetika patofyziologie MeSH
- protein-serin-threoninkinasy genetika MeSH
- proteiny hedgehog genetika MeSH
- rodokmen MeSH
- sekvenční analýza DNA MeSH
- signální transdukce MeSH
- syndrom krátkého žebra a polydaktylie genetika patologie MeSH
- těhotenství MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CILK1 protein, human MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- proteiny hedgehog MeSH