Most cited article - PubMed ID 24916080
When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine × schulzii trigenomic allopolyploid
BACKGROUND: Polyploidisation often results in genome rearrangements that may involve changes in both the single-copy sequences and the repetitive genome fraction. In this study, we performed a comprehensive comparative analysis of repetitive DNA, with a particular focus on ribosomal DNA (rDNA), in Brachypodium hybridum (2n = 4x = 30, subgenome composition DDSS), an allotetraploid resulting from a natural cross between two diploid species that resemble the modern B. distachyon (2n = 10; DD) and B. stacei (2n = 20; SS). Taking advantage of the recurrent origin of B. hybridum, we investigated two genotypes, Bhyb26 and ABR113, differing markedly in their evolutionary age (1.4 and 0.14 Mya, respectively) and which resulted from opposite cross directions. To identify the origin of rDNA loci we employed cytogenetic and molecular methods (FISH, gCAPS and Southern hybridisation), phylogenetic and genomic approaches. RESULTS: Unlike the general maintenance of doubled gene dosage in B. hybridum, the rRNA genes showed a remarkable tendency towards diploidisation at both locus and unit levels. While the partial elimination of 35S rDNA units occurred in the younger ABR113 lineage, unidirectional elimination of the entire locus was observed in the older Bhyb26 lineage. Additionally, a novel 5S rDNA family was amplified in Bhyb26 replacing the parental units. The 35S and 5S rDNA units were preferentially eliminated from the S- and D-subgenome, respectively. Thus, in the more ancient B. hybridum lineage, Bhyb26, 5S and 35S rRNA genes are likely expressed from different subgenomes, highlighting the complexity of polyploid regulatory networks. CONCLUSION: Comparative analyses between two B. hybridum lineages of distinct evolutionary ages revealed that although the recent lineage ABR113 exhibited an additive pattern of rDNA loci distribution, the ancient lineage Bhyb26 demonstrated a pronounced tendency toward diploidisation manifested by the reduction in the number of both 35S and 5S loci. In conclusion, the age of the allopolyploid appears to be a decisive factor in rDNA turnover in B. hybridum.
- Keywords
- Brachypodium hybridum, 35S rDNA IGS, FISH, 5S rDNA NTS, nrITS, rDNA loci,
- MeSH
- Brachypodium * genetics MeSH
- Phylogeny * MeSH
- Genetic Variation MeSH
- Genome, Plant MeSH
- Genes, rRNA genetics MeSH
- Evolution, Molecular * MeSH
- Polyploidy * MeSH
- DNA, Ribosomal genetics MeSH
- RNA, Ribosomal genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Ribosomal MeSH
- RNA, Ribosomal MeSH
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Recurrent polyploid formation and weak reproductive barriers between independent polyploid lineages generate intricate species complexes with high diversity and reticulate evolutionary history. Uncovering the evolutionary processes that formed their present-day cytotypic and genetic structure is a challenging task. We studied the species complex of Cardamine pratensis, composed of diploid endemics in the European Mediterranean and diploid-polyploid lineages more widely distributed across Europe, focusing on the poorly understood variation in Central Europe. To elucidate the evolution of Central European populations we analyzed ploidy level and genome size variation, genetic patterns inferred from microsatellite markers and target enrichment of low-copy nuclear genes (Hyb-Seq), and environmental niche differentiation. We observed almost continuous variation in chromosome numbers and genome size in C. pratensis s.str., which is caused by the co-occurrence of euploid and dysploid cytotypes, along with aneuploids, and is likely accompanied by inter-cytotype mating. We inferred that the polyploid cytotypes of C. pratensis s.str. are both of single and multiple, spatially and temporally recurrent origins. The tetraploid Cardamine majovskyi evolved at least twice in different regions by autopolyploidy from diploid Cardamine matthioli. The extensive genome size and genetic variation of Cardamine rivularis reflects differentiation induced by the geographic isolation of disjunct populations, establishment of triploids of different origins, and hybridization with sympatric C. matthioli. Geographically structured genetic lineages identified in the species under study, which are also ecologically divergent, are interpreted as descendants from different source populations in multiple glacial refugia. The postglacial range expansion was accompanied by substantial genetic admixture between the lineages of C. pratensis s.str., which is reflected by diffuse borders in their contact zones. In conclusion, we identified an interplay of diverse processes that have driven the evolution of the species studied, including allopatric and ecological divergence, hybridization, multiple polyploid origins, and genetic reshuffling caused by Pleistocene climate-induced range dynamics.
- Keywords
- Brassicaceae, environmental niche, genome size, hybridization, microsatellites, phylogeography, polyploidy, target enrichment,
- Publication type
- Journal Article MeSH
Plant genomes vary greatly in composition and size mainly due to the diversity of repetitive DNAs and the inherent propensity for their amplification and removal from the host genome. Most studies addressing repeatome dynamics focus on model organisms, whereas few provide comprehensive investigations across the genomes of related taxa. Herein, we analyze the evolution of repeats of the 13 species in Melampodium sect. Melampodium, representing all but two of its diploid taxa, in a phylogenetic context. The investigated genomes range in size from 0.49 to 2.27 pg/1C (ca. 4.5-fold variation), despite having the same base chromosome number (x = 10) and very strong phylogenetic affinities. Phylogenetic analysis performed in BEAST and ancestral genome size reconstruction revealed mixed patterns of genome size increases and decreases across the group. High-throughput genome skimming and the RepeatExplorer pipeline were utilized to determine the repeat families responsible for the differences in observed genome sizes. Patterns of repeat evolution were found to be highly correlated with phylogenetic position, namely taxonomic series circumscription. Major differences found were in the abundances of the SIRE (Ty1-copia), Athila (Ty3-gypsy), and CACTA (DNA transposon) lineages. Additionally, several satellite DNA families were found to be highly group-specific, although their overall contribution to genome size variation was relatively small. Evolutionary changes in repetitive DNA composition and genome size were complex, with independent patterns of genome up- and downsizing throughout the evolution of the analyzed diploids. A model-based analysis of genome size and repetitive DNA composition revealed evidence for strong phylogenetic signal and differential evolutionary rates of major lineages of repeats in the diploid genomes.
- Keywords
- Bayesian analysis, Melampodium, ancestral state reconstruction, genome size, phylogenetics, repetitive DNA, tandem repeats, transposable elements,
- Publication type
- Journal Article MeSH
INTRODUCTION: Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups. RESULTS: (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures. CONCLUSION: We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.
- Keywords
- 5S rRNA genes, allopolyploidy, evolution, graph structure clustering, high-throughput sequencing, hybridization, repeatome,
- Publication type
- Journal Article MeSH
BACKGROUND AND AIMS: Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS: Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS: All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS: Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.
- Keywords
- Allopolyploidy, Asian Cardamine, Brassicaceae, GISH (genomic in situ hybridization), autopolyploidy, centromere repositioning, chromosome rearrangements, comparative chromosome painting, diploidization, genome collinearity, hybridization, invasive species,
- MeSH
- Brassicaceae * MeSH
- Cardamine * MeSH
- Genome, Plant MeSH
- Humans MeSH
- Polyploidy MeSH
- Introduced Species MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Asia, Eastern MeSH
- Europe MeSH
Horseradish (Armoracia rusticana) and watercress (Nasturtium officinale) are economically important cruciferous vegetable species with limited genomic resources. We used comparative chromosome painting to identify the extent of chromosomal collinearity between horseradish and watercress, and to reconstruct the origin and evolution of the two tetraploid genomes (2n = 4x = 32). Our results show that horseradish and watercress genomes originated from a common ancestral (n = 8) genome, structurally resembling the Ancestral Crucifer Karyotype (n = 8), which, however, contained two unique translocation chromosomes (AK6/8 and AK8/6). Except for a 2.4-Mb unequal chromosome translocation in watercress, both genomes are structurally identical. The structural similarity of the two parental subgenomes might suggest an autotetraploid origin of horseradish and watercress genomes. The subgenome stasis, apart from the single-chromosome translocation, indicates that homeologous recombination played a limited role in postpolyploid evolution in both tetraploid genomes. The octoploid genome of one-rowed watercress (N. microphyllum, 2n = 8x = 64), structurally mirroring the tetraploid horseradish and watercress genomes, originated via autopolyploidization from the immediate tetraploid predecessor of watercress or hybridization between this and another now-extinct tetraploid Nasturtium species. These comparative cytogenomic maps in horseradish and watercress represent a first stepping stone for future whole-genome sequencing efforts and genetic improvement of both crop species.
Allopolyploidy has played an important role in the evolution of the flowering plants. Genome mergers are often accompanied by significant and rapid alterations of genome size and structure via chromosomal rearrangements and altered dynamics of tandem and dispersed repetitive DNA families. Recent developments in sequencing technologies and bioinformatic methods allow for a comprehensive investigation of the repetitive component of plant genomes. Interpretation of evolutionary dynamics following allopolyploidization requires both the knowledge of parentage and the age of origin of an allopolyploid. Whereas parentage is typically inferred from cytogenetic and phylogenetic data, age inference is hampered by the reticulate nature of the phylogenetic relationships. Treating subgenomes of allopolyploids as if they belonged to different species (i.e., no recombination among subgenomes) and applying cross-bracing (i.e., putting a constraint on the age difference of nodes pertaining to the same event), we can infer the age of allopolyploids within the framework of the multispecies coalescent within BEAST2. Together with a comprehensive characterization of the repetitive DNA fraction using the RepeatExplorer pipeline, we apply the dating approach in a group of closely related allopolyploids and their progenitor species in the plant genus Melampodium (Asteraceae). We dated the origin of both the allotetraploid, Melampodium strigosum, and its two allohexaploid derivatives, Melampodium pringlei and Melampodium sericeum, which share both parentage and the direction of the cross, to the Pleistocene ($<$1.4 Ma). Thus, Pleistocene climatic fluctuations may have triggered formation of allopolyploids possibly in short intervals, contributing to difficulties in inferring the precise temporal order of allopolyploid species divergence of M. sericeum and M. pringlei. The relatively recent origin of the allopolyploids likely played a role in the near-absence of major changes in the repetitive fraction of the polyploids' genomes. The repetitive elements most affected by the postpolyploidization changes represented retrotransposons of the Ty1-copia lineage Maximus and, to a lesser extent, also Athila elements of Ty3-gypsy family.
- MeSH
- Asteraceae classification genetics MeSH
- DNA, Plant genetics MeSH
- Phylogeny MeSH
- Genome, Plant genetics MeSH
- Evolution, Molecular * MeSH
- Polyploidy MeSH
- Repetitive Sequences, Nucleic Acid genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
BACKGROUND AND AIMS: Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. METHODS: We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. KEY RESULTS: Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH ('Darmor', 'Yudal' and 'Asparagus kale') harboured the same number (12 per diploid set) of loci. In B. napus 'Darmor', the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus 'Darmor'. In contrast, B. napus 'Yudal' showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus 'Asparagus kale' showed an intermediate pattern to 'Darmor' and 'Yudal'. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar ('Norin 9') showed co-dominance. CONCLUSIONS: The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates with the direction of expression dominance indicating that gene activity may be needed for interlocus gene conversion.
- Keywords
- Brassica napus, allopolyploidy, chromosome evolution, gene conversion, rDNA,
- MeSH
- Brassica napus genetics MeSH
- Genetic Variation genetics MeSH
- Genetic Loci genetics MeSH
- Gene Conversion genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- DNA, Ribosomal genetics MeSH
- Blotting, Southern MeSH
- Gene Expression Profiling MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Ribosomal MeSH
In all eukaryotes, the highly repeated 35S ribosomal DNA (rDNA) sequences encoding 18S-5.8S-26S ribosomal RNA (rRNA) typically show high levels of intragenomic uniformity due to homogenisation processes, leading to concerted evolution of 35S rDNA repeats. Here, we compared 35S rDNA divergence in several seed plants using next generation sequencing and a range of molecular and cytogenetic approaches. Most species showed similar 35S rDNA homogeneity indicating concerted evolution. However, Cycas revoluta exhibits an extraordinary diversity of rDNA repeats (nucleotide sequence divergence of different copies averaging 12 %), influencing both the coding and non-coding rDNA regions nearly equally. In contrast, its rRNA transcriptome was highly homogeneous suggesting that only a minority of genes (<20 %) encode functional rRNA. The most common SNPs were C > T substitutions located in symmetrical CG and CHG contexts which were also highly methylated. Both functional genes and pseudogenes appear to cluster on chromosomes. The extraordinary high levels of 35S rDNA diversity in C. revoluta, and probably other species of cycads, indicate that the frequency of repeat homogenisation has been much lower in this lineage, compared with all other land plant lineages studied. This has led to the accumulation of methylation-driven mutations and pseudogenisation. Potentially, the reduced homology between paralogs prevented their elimination by homologous recombination, resulting in long-term retention of rDNA pseudogenes in the genome.
- Keywords
- Concerted evolution, Cycadales, Cytosine methylation, Living fossil, rDNA,
- MeSH
- Cycas genetics MeSH
- DNA, Plant genetics MeSH
- Transcription, Genetic genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- DNA, Ribosomal Spacer genetics MeSH
- DNA, Ribosomal genetics MeSH
- RNA, Ribosomal, 18S genetics MeSH
- RNA, Ribosomal, 5.8S genetics MeSH
- RNA, Ribosomal genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- DNA, Ribosomal Spacer MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 18S MeSH
- RNA, Ribosomal, 5.8S MeSH
- RNA, Ribosomal MeSH
- RNA, ribosomal, 26S MeSH Browser