Nejvíce citovaný článek - PubMed ID 25139449
Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable polymer with properties comparable to polypropylene and therefore has the potential to replace conventional plastics. PHB is intracellularly accumulated by prokaryotic organisms. For the cells PHB functions manly as carbon and energy source, but all possible functions of PHB are still not known. Synechocystis (cyanobacteria) accumulates PHB using light as energy and CO2 as carbon source. The main trigger for PHB accumulation in cyanobacteria is nitrogen and phosphorous depletion with simultaneous surplus of carbon and energy. For the above reasons, obtaining knowledge about external factors influencing PHB accumulation is of highest interest. This study compares the effect of continuous light exposure and day/night (16/8 h) cycles on selected physiology parameters of three Synechocystis strains. We show that continuous illumination at moderate light intensities leads to an increased PHB accumulation in Synechocystis salina CCALA 192 (max. 14.2% CDW - cell dry weight) compared to day/night cycles (3.7% CDW). In addition to PHB content, glycogen and cell size increased, while cell density and cell viability decreased. The results offer new approaches for further studies to gain deeper insights into the role of PHB in cyanobacteria to obtain bioplastics in a more sustainable and environmentally friendly way.
- Klíčová slova
- PHB, Synechocystis, cell size, continuous illumination, day/night cycle, glycogen,
- Publikační typ
- časopisecké články MeSH
Photosystem II (PSII) represents the most vulnerable component of the photosynthetic machinery and its response in plants subjected to abiotic stress has been widely studied over many years. PSII is a thylakoid membrane-located multiprotein pigment complex that catalyses the light-induced electron transfer from water to plastoquinone with the concomitant production of oxygen. PSII is rich in intrinsic (PsbA and PsbD, namely D1 and D2, CP47 or PsbB and CP43 or PsbC) but also extrinsic proteins. The first ones are more largely conserved from cyanobacteria to higher plants while the extrinsic proteins are different among species. It has been found that extrinsic proteins involved in oxygen evolution change dramatically the PSII efficiency and PSII repair systems. However, little information is available on the effects of abiotic stress on their function and structure.
- Klíčová slova
- abiotic stress, extrinsic protein, intrinsic protein, photosynthesis, photosystem II,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The importance of high temperature as an environmental factor is growing in proportion to deepening global climate change. The study aims to evaluate the effects of long-term acclimation of plants to elevated temperature on the tolerance of their photosynthetic apparatus to heat stress. Three wheat (Triticum sp. L.) genotypes differing in leaf and photosynthetic traits were analyzed: Thesee, Roter Samtiger Kolbenweizen, and ANK 32A. The pot experiment was established in natural conditions outdoors (non-acclimated variant), from which a part of the plants was placed in foil tunnel with elevated temperature for 14 days (high temperature-acclimated variant). A severe heat stress screening experiment was induced by an exposition of the plans in a growth chamber with artificial light and air temperature up to 45 °C for ~12 h before the measurements. The measurements of leaf photosynthetic CO2 assimilation, stomatal conductance, and rapid kinetics of chlorophyll a fluorescence was performed. The results confirmed that a high temperature drastically reduced the photosynthetic assimilation rate caused by the non-stomatal (biochemical) limitation of photosynthetic processes. On the other hand, the chlorophyll fluorescence indicated only a moderate level of decrease of quantum efficiency of photosystem (PS) II (Fv/Fm parameter), indicating mostly reversible heat stress effects. The heat stress led to a decrease in the number of active PS II reaction centers (RC/ABS) and overall activity o PSII (PIabs) in all genotypes, whereas the PS I (parameter ψREo) was negatively influenced by heat stress in the non-acclimated variant only. Our results showed that the genotypes differ in acclimation capacity to heat stress, and rapid noninvasive techniques may help screen the stress effects and identify more tolerant crop genotypes. The acclimation was demonstrated more at the PS I level, which may be associated with the upregulation of alternative photosynthetic electron transport pathways with clearly protective functions.
- Klíčová slova
- acclimation, chlorophyll fluorescence, heat stress, photosynthesis, wheat,
- Publikační typ
- časopisecké články MeSH
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.
- Klíčová slova
- Lathyrus sativus, ROS, cyclic electron transport, linear electron transport, photosynthetic apparatus, photosystem I, photosystem II, salt stress,
- MeSH
- aklimatizace * MeSH
- fotosyntéza * MeSH
- fyziologický stres MeSH
- Lathyrus fyziologie MeSH
- salinita * MeSH
- semenáček fyziologie MeSH
- solný stres MeSH
- stonky rostlin fyziologie MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Klíčová slova
- Arabidopsis thaliana, Chlamydomonas reinhardtii, Photosystem II, Synechocystis sp. PCC 6803, biogenesis, cyanobacteria, photodamage, photosynthesis,
- Publikační typ
- úvodníky MeSH