Nejvíce citovaný článek - PubMed ID 25356827
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
- Klíčová slova
- developmental biology, differentiation, ecdysone, juvenile hormone, metamorphosis, myoglianin, precocene, thermobia domestica,
- MeSH
- biologická proměna * fyziologie MeSH
- hmyz MeSH
- juvenilní hormony * MeSH
- morfogeneze MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- juvenilní hormony * MeSH
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
- Klíčová slova
- differentiation, ecdysone, juvenile hormone, metamorphosis, myoglianin, precocene,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.
- MeSH
- buněčná membrána MeSH
- cirkadiánní hodiny * genetika MeSH
- cirkadiánní rytmus genetika MeSH
- ekdyson genetika MeSH
- hmyz MeSH
- juvenilní hormony genetika MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ekdyson MeSH
- juvenilní hormony MeSH
Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET-TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.
- Klíčová slova
- PAS domain, basic helix–loop–helix/transcription factor, hormone receptor, insect, juvenile hormone, ligand-binding protein, methoprene, nuclear translocation, protein phosphorylation, protein purification,
- MeSH
- Aedes genetika metabolismus MeSH
- fosforylace MeSH
- hmyzí proteiny genetika metabolismus MeSH
- juvenilní hormony metabolismus MeSH
- posttranslační úpravy proteinů * MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- Sf9 buňky MeSH
- Spodoptera MeSH
- Tribolium genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- juvenilní hormony MeSH
- receptory buněčného povrchu MeSH
RNA interference (RNAi) has been widely applied for uncovering the biological functions of numerous genes, and has been envisaged as a pest control tool operating by disruption of essential gene expression. Although different methods, such as injection, feeding, and soaking, have been reported for successful delivery of double-stranded RNA (dsRNA), the efficiency of RNAi through oral delivery of dsRNA is highly variable among different insect groups. The German cockroach, Blattella germanica, is highly sensitive to the injection of dsRNA, as shown by many studies published previously. The present study describes a method to demonstrate that the dsRNA encapsulated with liposome carriers is sufficient to retard the degradation of dsRNA by midgut juice. Notably, the continuous feeding of dsRNA encapsulated by liposomes significantly reduces the tubulin expression in the midgut, and led to the death of cockroaches. In conclusion, the formulation and utilization of dsRNA lipoplexes, which protect dsRNA against nucleases, could be a practical use of RNAi for insect pest control in the future.
- MeSH
- dvouvláknová RNA metabolismus MeSH
- hmyz genetika MeSH
- liposomy metabolismus MeSH
- RNA interference fyziologie MeSH
- švábi genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dvouvláknová RNA MeSH
- liposomy MeSH
Juvenile hormones (JH) and ecdysteroids regulate many biological and metabolic processes. CREB-binding protein (CBP) is a transcriptional co-regulator with histone acetyltransferase (HAT) activity. Therefore, CBP is involved in activation of many transcription factors that regulate expression of genes associated with postembryonic development in insects. However, the function of CBP in JH action in insects is not well understood. Hence, we studied the role of CBP in JH action in the red flour beetle, Tribolium castaneum and the Tribolium cell line. CBP knockdown caused a decrease in JH induction of genes, Kr-h1, 4EBP and G13402 in T. castaneum larvae, adults and TcA cells whereas, Trichostatin A [TSA, a histone deacetylase (HDAC) inhibitor] induced the expression of these JH-response genes. Western blot analysis with specific antibodies revealed the requirement of CBP for the acetylation of H3K18 and H3K27 in both T. castaneum and TcA cells. Chromatin immunoprecipitation (Chip) assays showed the importance of CBP-mediated acetylation of H3K27 for JH induction of Kr-h1, 4EBP, and G13402 in TcA cells. These data suggest that CBP plays an important role in JH action in the model insect, T.castaneum.
- MeSH
- acetylace MeSH
- genový knockout MeSH
- histony metabolismus MeSH
- hmyzí proteiny genetika metabolismus MeSH
- juvenilní hormony farmakologie MeSH
- protein vázající CREB genetika metabolismus MeSH
- Tribolium genetika růst a vývoj metabolismus MeSH
- vývojová regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- histony MeSH
- hmyzí proteiny MeSH
- juvenilní hormony MeSH
- protein vázající CREB MeSH
BACKGROUND: Juvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect. RESULTS: CBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc. CONCLUSION: These data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest.
- Klíčová slova
- CBP, Ecdysone, Juvenile hormone, Kr-h1, RNA seq, RNAi, Tribolium,
- MeSH
- exprese genu MeSH
- hmyzí proteiny antagonisté a inhibitory genetika metabolismus fyziologie MeSH
- juvenilní hormony farmakologie MeSH
- larva genetika metabolismus MeSH
- protein vázající CREB antagonisté a inhibitory genetika metabolismus fyziologie MeSH
- RNA interference MeSH
- Tribolium genetika růst a vývoj metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- hmyzí proteiny MeSH
- juvenilní hormony MeSH
- protein vázající CREB MeSH
Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology.
- MeSH
- buněčné linie MeSH
- Drosophila melanogaster embryologie genetika MeSH
- geneticky modifikovaná zvířata MeSH
- juvenilní hormony metabolismus MeSH
- nenasycené mastné kyseliny metabolismus MeSH
- proteiny Drosophily genetika MeSH
- signální transdukce genetika MeSH
- transkripční faktory bHLH genetika MeSH
- transkripční faktory genetika MeSH
- vazba proteinů fyziologie MeSH
- vývojová regulace genové exprese genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gce protein, Drosophila MeSH Prohlížeč
- juvenilní hormony MeSH
- MET protein, Drosophila MeSH Prohlížeč
- methyl farnesoate MeSH Prohlížeč
- nenasycené mastné kyseliny MeSH
- proteiny Drosophily MeSH
- TAI protein, Drosophila MeSH Prohlížeč
- transkripční faktory bHLH MeSH
- transkripční faktory MeSH