We previously described the most highly expressed enzymes from the gut of the red flour beetle, Tribolium castaneum, as cathepsins L. In the present study, two C1 family-specific cysteine cathepsin L enzymes from the larval midgut were isolated and identified using MALDI-TOF MS analysis. The isolated T. castaneum cathepsins were characterized according to their specificity against chromogenic and fluorogenic peptide substrates, and the most efficiently hydrolyzed substrate was Z-FR-pNA with Arg in the P1 subsite. The specificity of insect digestive cathepsins was compared with human lysosomal cathepsin L, the well-studied peptidase of the C1 family cathepsins. T. castaneum digestive cathepsins efficiently hydrolyzed substrates with small and uncharged amino acid residues at P1 (Ala, Gln) more than human cathepsin L. In particular, these insect digestive cathepsins cleaved with higher efficiency the analogs of immunogenic peptides of gliadins, which contribute to autoimmune celiac disease in susceptible people, and thus insect enzymes may be useful in enzymatic treatments for this disease. A bioinformatic study supported by the proteomic analysis of the primary structures of the isolated cathepsins was used to compare tertiary models. The phylogenetic analysis of coleopteran and human cathepsins from the L subfamily indicated that insect digestive cathepsins grouped separately from lysosomal cathepsins.
- Klíčová slova
- Celiac disease, Cysteine cathepsins, Digestive cathepsin L, Digestive enzymes, Hydrolysis of gliadin peptides, Lysosomal cathepsin L, Tribolium castaneum,
- MeSH
- brouci MeSH
- celiakie farmakoterapie MeSH
- fylogeneze MeSH
- hmyzí proteiny chemie metabolismus MeSH
- kathepsin L * chemie metabolismus MeSH
- kathepsiny chemie metabolismus MeSH
- larva metabolismus MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- proteasy chemie metabolismus MeSH
- proteomika MeSH
- trávení fyziologie MeSH
- trávicí systém metabolismus MeSH
- Tribolium metabolismus MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- kathepsin L * MeSH
- kathepsiny MeSH
- proteasy MeSH
Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET-TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.
- Klíčová slova
- PAS domain, basic helix–loop–helix/transcription factor, hormone receptor, insect, juvenile hormone, ligand-binding protein, methoprene, nuclear translocation, protein phosphorylation, protein purification,
- MeSH
- Aedes genetika metabolismus MeSH
- fosforylace MeSH
- hmyzí proteiny genetika metabolismus MeSH
- juvenilní hormony metabolismus MeSH
- posttranslační úpravy proteinů * MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- Sf9 buňky MeSH
- Spodoptera MeSH
- Tribolium genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- juvenilní hormony MeSH
- receptory buněčného povrchu MeSH
BACKGROUND: Epigenetic modifications including DNA methylation and post-translational modifications of histones are known to regulate gene expression. Antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs) mediate transcriptional reprogramming during insect development as shown in Drosophila melanogaster and other insects. Juvenile hormones (JH) play vital roles in the regulation of growth, development, metamorphosis, reproduction and other physiological processes. However, our current understanding of epigenetic regulation of JH action is still limited. Hence, we studied the role of CREB binding protein (CBP, contains HAT domain) and Trichostatin A (TSA, HDAC inhibitor) on JH action. RESULTS: Exposure of Tribolium castaneum cells (TcA cells) to JH or TSA caused an increase in expression of Kr-h1 (a known JH-response gene) and 31 or 698 other genes respectively. Knockdown of the gene coding for CBP caused a decrease in the expression of 456 genes including Kr-h1. Interestingly, the expression of several genes coding for transcription factors, nuclear receptors, P450 and fatty acid synthase family members that are known to mediate JH action were affected by CBP knockdown or TSA treatment. CONCLUSIONS: These data suggest that acetylation and deacetylation mediated by HATs and HDACs play an important role in JH action.
- Klíčová slova
- FOXO Tribolium and TcA cells, HAT, HDAC, Kr-h1,
- MeSH
- acetylace MeSH
- dvouvláknová RNA metabolismus MeSH
- epigeneze genetická účinky léků MeSH
- hmyzí proteiny antagonisté a inhibitory genetika metabolismus MeSH
- kyseliny hydroxamové farmakologie MeSH
- protein vázající CREB antagonisté a inhibitory genetika metabolismus MeSH
- RNA interference MeSH
- Tribolium účinky léků růst a vývoj metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dvouvláknová RNA MeSH
- hmyzí proteiny MeSH
- kyseliny hydroxamové MeSH
- protein vázající CREB MeSH
- trichostatin A MeSH Prohlížeč
Juvenile hormones (JH) and ecdysteroids regulate many biological and metabolic processes. CREB-binding protein (CBP) is a transcriptional co-regulator with histone acetyltransferase (HAT) activity. Therefore, CBP is involved in activation of many transcription factors that regulate expression of genes associated with postembryonic development in insects. However, the function of CBP in JH action in insects is not well understood. Hence, we studied the role of CBP in JH action in the red flour beetle, Tribolium castaneum and the Tribolium cell line. CBP knockdown caused a decrease in JH induction of genes, Kr-h1, 4EBP and G13402 in T. castaneum larvae, adults and TcA cells whereas, Trichostatin A [TSA, a histone deacetylase (HDAC) inhibitor] induced the expression of these JH-response genes. Western blot analysis with specific antibodies revealed the requirement of CBP for the acetylation of H3K18 and H3K27 in both T. castaneum and TcA cells. Chromatin immunoprecipitation (Chip) assays showed the importance of CBP-mediated acetylation of H3K27 for JH induction of Kr-h1, 4EBP, and G13402 in TcA cells. These data suggest that CBP plays an important role in JH action in the model insect, T.castaneum.
- MeSH
- acetylace MeSH
- genový knockout MeSH
- histony metabolismus MeSH
- hmyzí proteiny genetika metabolismus MeSH
- juvenilní hormony farmakologie MeSH
- protein vázající CREB genetika metabolismus MeSH
- Tribolium genetika růst a vývoj metabolismus MeSH
- vývojová regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- histony MeSH
- hmyzí proteiny MeSH
- juvenilní hormony MeSH
- protein vázající CREB MeSH
BACKGROUND: Juvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect. RESULTS: CBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc. CONCLUSION: These data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest.
- Klíčová slova
- CBP, Ecdysone, Juvenile hormone, Kr-h1, RNA seq, RNAi, Tribolium,
- MeSH
- exprese genu MeSH
- hmyzí proteiny antagonisté a inhibitory genetika metabolismus fyziologie MeSH
- juvenilní hormony farmakologie MeSH
- larva genetika metabolismus MeSH
- protein vázající CREB antagonisté a inhibitory genetika metabolismus fyziologie MeSH
- RNA interference MeSH
- Tribolium genetika růst a vývoj metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- hmyzí proteiny MeSH
- juvenilní hormony MeSH
- protein vázající CREB MeSH
Insect anti-stress responses, including those induced by insecticides, are controlled by adipokinetic hormones (AKHs). We examined the physiological consequences of Pyrap-AKH application on Tribolium castaneum adults (AKH-normal and AKH-deficient prepared by the RNAi technique) treated by two insecticides, pirimiphos-methyl and deltamethrin. Co-application of pirimiphos-methyl and/or deltamethrin with AKH significantly increased beetle mortality compared with application of the insecticides alone. This co-treatment was accompanied by substantial stimulation of general metabolism, as monitored by carbon dioxide production. Further, the insecticide treatment alone affected some basic markers of oxidative stress: it lowered total antioxidative capacity as well as the activity of superoxide dismutase in the beetle body; in addition, it enhanced the activity of catalase and glutathione-S-transferase. However, these discrepancies in oxidative stress markers were eliminated/reduced by co-application with Pyrap-AKH. We suggest that the elevation of metabolism, which is probably accompanied with faster turnover of toxins, might be responsible for the higher mortality that results after AKH and insecticide co-application. Changes in oxidative stress markers are probably not included in the mechanisms responsible for increased mortality.
- Klíčová slova
- Adipokinetic hormone, Insecticide, Metabolism, Mortality, Oxidative stress, RNA interference,
- MeSH
- energetický metabolismus účinky léků fyziologie MeSH
- hmyzí hormony aplikace a dávkování toxicita MeSH
- insekticidy aplikace a dávkování toxicita MeSH
- kyselina pyrrolidonkarboxylová aplikace a dávkování analogy a deriváty toxicita MeSH
- neuropeptidy aplikace a dávkování toxicita MeSH
- oxidační stres účinky léků fyziologie MeSH
- Tribolium účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adipokinetic hormone, beetle MeSH Prohlížeč
- hmyzí hormony MeSH
- insekticidy MeSH
- kyselina pyrrolidonkarboxylová MeSH
- neuropeptidy MeSH