Nejvíce citovaný článek - PubMed ID 25423910
BACKGROUND: Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages. METHODS: We analysed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades. RESULTS: Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades. CONCLUSIONS: Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potentially also influencing the process of post-polyploid diploidization. We propose a model which in a single framework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.
- Klíčová slova
- Angiosperms, CENH3, asymmetric and symmetric meiosis, bryophytes, centromere drive, chromosome size, ferns, genome size, gymnosperms, lycophytes, post-polyploid diploidization,
- MeSH
- biologická evoluce MeSH
- centromera * genetika MeSH
- chromozomy rostlin * genetika MeSH
- cykasy genetika MeSH
- délka genomu * MeSH
- fylogeneze MeSH
- genom rostlinný * genetika MeSH
- histony genetika metabolismus MeSH
- kapradiny genetika fyziologie MeSH
- Magnoliopsida genetika MeSH
- meióza * genetika MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- rostliny genetika MeSH
- selekce (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony MeSH
BACKGROUND: The genus Allium is known for its high chromosomal variability, but most chromosome counts are based on a few individuals and genome size (GS) reports are limited in certain taxonomic groups. This is evident in the Allium sect. Codonoprasum, a species-rich (> 150 species) and taxonomically complex section with weak morphological differences between taxa, the presence of polyploidy and frequent misidentification of taxa. Consequently, a significant proportion of older karyological reports may be unreliable and GS data are lacking for the majority of species within the section. This study, using chromosome counting and flow cytometry (FCM), provides the first comprehensive and detailed insight into variation in chromosome number, polyploid frequency and distribution, and GS in section members, marking a step towards understanding the unresolved diversification and evolution of this group. RESULTS: We analysed 1578 individuals from 316 populations of 25 taxa and reported DNA ploidy levels and their GS, with calibration from chromosome counts in 22 taxa. Five taxa had multiple ploidy levels. First estimates of GS were obtained for 16 taxa. A comprehensive review of chromosome number and DNA-ploidy levels in 129 taxa of the section revealed that all taxa have x = 8, except A. rupestre with two polyploid series (x = 8, descending dysploidy x = 7), unique for this section. Diploid taxa dominated (72.1%), while di- & polyploid (12.4%) and exclusively polyploid (15.5%) taxa were less common. Ploidy diversity showed that diploid taxa dominated in the eastern Mediterranean and decreased towards the west and north, whereas only polyploid cytotypes of di- & polyploid taxa or exclusively polyploid taxa dominated in northern and northwestern Europe. A 4.1-fold variation in GS was observed across 33 taxa analysed so far (2C = 22.3-92.1 pg), mainly due to polyploidy, with GS downsizing observed in taxa with multiple ploidy levels. Intra-sectional GS variation suggests evolutionary relationships, and intraspecific GS variation within some taxa may indicate taxonomic heterogeneity and/or historical migration patterns. CONCLUSIONS: Our study showed advantages of FCM as an effective tool for detecting ploidy levels and determining GS within the section. GS could be an additional character in understanding evolution and phylogenetic relationships within the section.
- Klíčová slova
- Chromosome number, Cytogeography, DNA ploidy level, Flow cytometry, Genome size, Polyploidy,
- Publikační typ
- časopisecké články MeSH
The existing plant trait databases' applicability is limited for studies dealing with the flora and vegetation of the eastern and central part of Europe and for large-scale comparisons across regions, mostly because their geographical data coverage is limited and they incorporate records from several different sources, often from regions with markedly different climatic conditions. These problems motivated the compilation of a regional dataset for the flora of the Pannonian region (Eastern Central Europe). PADAPT, the Pannonian Dataset of Plant Traits relies on regional data sources and collates data on 54 traits and attributes of the plant species of the Pannonian region. The current version covers approximately 90% of the species of the region and consists of 126,337 records on 2745 taxa. By including species of the eastern part of Europe not covered by other databases, PADAPT can facilitate studying the flora and vegetation of the eastern part of the continent. Although data coverage is far from complete, PADAPT meets the longstanding need for a regional database of the Pannonian flora.
- MeSH
- databáze faktografické MeSH
- rostliny * MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Geografické názvy
- Evropa MeSH
INTRODUCTION: Despite the wealth of studies dealing with the invasions of alien plants, invasions of alien genotypes of native species (cryptic invasions) have been vastly neglected. The impact of cryptic invasions on the biodiversity of plant communities can, however, be significant. Inland saline habitats and halophytes (i.e., salt-tolerant plant species) are especially threatened by this phenomenon as they inhabit fragmented remnants of largely destroyed habitats, but at the same time some of these halophytic species are rapidly spreading along salt-treated roads. To study potential cryptic invasion of halophytes, the patterns of genome size and ploidy variation in the Puccinellia distans complex (Poaceae), the most rapidly spreading roadside halophyte in Central Europe, were investigated. METHODS: DNA flow cytometry with confirmatory chromosome counts were employed to assess ploidy levels of 1414 individuals from 133 populations of the P. distans complex. In addition, climatic niche modelling was used to predict the distributions of selected cytotypes. RESULTS: Eight groups differing in ploidy level and/or genome size were discovered, one diploid (2x; 2n = 14), two tetraploid (4xA, 4xB; 2n = 28), one pentaploid (5x; 2n = 35), three hexaploid (6xA, 6xB, 6xC; 2n = 42), and one heptaploid (7x; 2n = 49). The hexaploids (mostly the 6xC cytotype) were widespread through the study area, spreading intensively in both anthropogenic and natural habitats and probably hybridizing with the natural habitat dwelling tetraploids. In contrast, the non-hexaploid cytotypes rarely spread and were predominantly confined to natural habitats. DISCUSSION: The extensive spread of the hexaploid cytotypes along roadsides has most likely facilitated their incursion into natural habitats. The colonization of new natural habitats by the hexaploids may pose a threat to the indigenous Puccinellia populations by compromising their genetic integrity and/or by outcompeting them.
- Klíčová slova
- Puccinellia distans agg., cryptic invasion, cytogeography, flow cytometry, genetic pollution, halophyte, polyploidy,
- Publikační typ
- časopisecké články MeSH
Odd ploidy-level cytotypes in sexually reproducing species are considered a dead end due to absent or reduced fertility. If sterility is only partial, however, their contribution to the population gene pool can be augmented by longevity and clonal growth. To test this, we investigated the cytotype origin and spatial pattern, and pollen viability in three relict shrub species of the genus Daphne (Thymelaeaceae Juss.) in central Europe. Daphne cneorum subsp. cneorum is a widespread European species that has a broad ecological amplitude, whereas D. cneorum subsp. arbusculoides and D. arbuscula are narrow endemics of the western Pannonian Plain and the Western Carpathians, respectively. Our study confirmed that all three taxa are diploid. However, of more than a thousand analysed individuals of D. cneorum subsp. cneorum, five in four different populations were triploid. Our data indicate that these triploids most likely originate from recurrent autopolyploidization events caused by the fusion of reduced and unreduced gametes. High pollen viability was observed in all three taxa and in both diploid and triploid cytotypes, ranging from 65 to 100 %. Our study highlights the significant role of odd ploidy-level cytotypes in interploidy gene flow, calling for more research into their reproduction, genetic variability, and overall fitness. Interestingly, while the endemic D. arbuscula differs from D. cneorum based on genetic and genome size data, D. cneorum subsp. arbusculoides was indistinguishable from D. cneorum subsp. cneorum. However, our study reveals that the subspecies differ in the number of flowers per inflorescence. This is the first comprehensive cytogeographic study of this intriguing genus at a regional scale, and in spite of its karyological stability, it contributes to our understanding of genomic evolution in plant species with a wide ecological amplitude.
- Klíčová slova
- Carpathians, Daphne, ITS, Pannonian Basin, endemics, genome size stasis, pollen fertility, polyploidy, relicts, triploids,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Reproductive isolation and local establishment are necessary for plant speciation. Polyploidy, the possession of more than two complete chromosome sets, creates a strong postzygotic reproductive barrier between diploid and tetraploid cytotypes. However, this barrier weakens between polyploids (e.g. tetraploids and hexaploids). Reproductive isolation may be enhanced by cytotype morphological and environmental differentiation. Moreover, morphological adaptations to local conditions contribute to plant establishment. However, the relative contributions of ploidy level and the environment to morphology have generally been neglected. Thus, the extent of morphological variation driven by ploidy level and the environment was modelled for diploid, tetraploid and hexaploid cytotypes of Campanula rotundifolia agg. Cytotype distribution was updated, and morphological and environmental differentiation was tested in the presence and absence of natural contact zones. METHODS: Cytotype distribution was assessed from 231 localities in Central Europe, including 48 localities with known chromosome counts, using flow cytometry. Differentiation in environmental niche and morphology was tested for cytotype pairs using discriminant analyses. A structural equation model was used to explore the synergies between cytotype, environment and morphology. KEY RESULTS: Tremendous discrepancies were revealed between the reported and detected cytotype distribution. Neither mixed-ploidy populations nor interploidy hybrids were detected in the contact zones. Diploids had the broadest environmental niche, while hexaploids had the smallest and specialized niche. Hexaploids and spatially isolated cytotype pairs differed morphologically, including allopatric tetraploids. While leaf and shoot morphology were influenced by environmental conditions and polyploidy, flower morphology depended exclusively on the cytotype. CONCLUSIONS: Reproductive isolation mechanisms vary between cytotypes. While diploids and polyploids are isolated postzygotically, the environmental niche shift is essential between higher polyploids. The impact of polyploidy and the environment on plant morphology implies the adaptive potential of polyploids, while the exclusive relationship between flower morphology and cytotype highlights the role of polyploidy in reproductive isolation.
- Klíčová slova
- Campanula rotundifolia agg, allopatry, contact zone, cytotype distribution, diploid, environmental niche shift, hexaploid, morphological differentiation, parapatry, polyploidy, reproductive isolation, tetraploid,
- MeSH
- Campanulaceae * MeSH
- diploidie MeSH
- ploidie MeSH
- polyploidie MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS: We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS: We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS: The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.
- Klíčová slova
- Chromosome number, Cyperaceae, Juncaceae, Thurniaceae, chromosome size, distribution range size, genome size, holocentric chromosomes, holokinetic drive,
- MeSH
- chromozomy rostlin * genetika MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.
- Klíčová slova
- Cycadaceae, centromeres, chromosome rearrangements, epigenetics, genome evolution, gymnosperms, telomeres,
- MeSH
- centromera genetika MeSH
- cykasy * genetika MeSH
- hybridizace in situ fluorescenční MeSH
- Magnoliopsida * genetika MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genus Viola (Violaceae) is among the 40-50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker's classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.
- Klíčová slova
- Viola, Violaceae, fossils, monophyletic, morphology, nomenclature, phylogeny, polyploidy, taxonomic revision,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The Mediterranean Basin is an important biodiversity hotspot and one of the richest areas in the world in terms of plant diversity. Its flora parallels in several aspects that of the Eurasian steppes and the adjacent Irano-Turanian floristic region. The Euphorbia nicaeensis alliance spans this immense area from the western Mediterranean to Central Asia. Using an array of complementary methods, ranging from phylogenomic and phylogenetic data through relative genome size (RGS) estimation to morphometry, we explored relationships and biogeographic connections among taxa of this group. We identified the main evolutionary lineages, which mostly correspond to described taxa. However, despite the use of highly resolving Restriction Site Associated DNA (RAD) sequencing data, relationships among the main lineages remain ambiguous. This is likely due to hybridisation, lineage sorting triggered by rapid range expansion, and polyploidisation. The phylogenomic data identified cryptic diversity in the Mediterranean, which is also correlated with RGS and, partly, also, morphological divergence, rendering the description of a new species necessary. Biogeographic analyses suggest that Western Asia is the source area for the colonisation of the Mediterranean by this plant group and highlight the important contribution of the Irano-Turanian region to the high diversity in the Mediterranean Basin. The diversification of the E. nicaeensis alliance in the Mediterranean was triggered by vicariance in isolated Pleistocene refugia, morphological adaptation to divergent ecological conditions, and, to a lesser extent, by polyploidisation.
- Klíčová slova
- Eurasian steppes, Irano-Turanian region, Mediterranean Basin, RAD sequencing, morphometry, phylogeny, polyploidy, taxonomy,
- Publikační typ
- časopisecké články MeSH