Most cited article - PubMed ID 26410304
A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History
The molecular underpinnings and consequences of cycles of whole-genome duplication (WGD) and subsequent gene loss through subgenome fractionation remain largely elusive. Endogenous drivers, such as transposable elements (TEs), have been postulated to shape genome-wide dominance and biased fractionation, leading to a conserved least-fractionated (LF) subgenome and a degenerated most-fractionated (MF) subgenome. In contrast, the role of exogenous factors, such as those induced by environmental stresses, has been overlooked. In this study, a chromosome-scale assembly of the alpine buckler mustard (Biscutella laevigata; Brassicaceae) that underwent a WGD event about 11 million years ago is coupled with transcriptional responses to heat, cold, drought, and herbivory to assess how gene expression is associated with differential gene retention across the MF and LF subgenomes. Counteracting the impact of TEs in reducing the expression and retention of nearby genes across the MF subgenome, dosage balance is highlighted as a main endogenous promoter of the retention of duplicated gene products under purifying selection. Consistent with the "turn a hobby into a job" model, about one-third of environment-responsive duplicates exhibit novel expression patterns, with one copy typically remaining conditionally expressed, whereas the other copy has evolved constitutive expression, highlighting exogenous factors as a major driver of gene retention. Showing uneven patterns of fractionation, with regions remaining unbiased, but with others showing high bias and significant enrichment in environment-responsive genes, this mesopolyploid genome presents evolutionary signatures consistent with an interplay of endogenous and exogenous factors having driven gene content following WGD-fractionation cycles.
- Keywords
- conditionally expressed genes, dosage balance, environmental stress, subgenome dominance, transposable elements, whole-genome duplication,
- MeSH
- Brassicaceae genetics MeSH
- Gene Duplication MeSH
- Stress, Physiological MeSH
- Genome, Plant * MeSH
- Evolution, Molecular MeSH
- Gene Expression Regulation, Plant MeSH
- DNA Transposable Elements MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA Transposable Elements MeSH
Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids.
The establishment of Arabidopsis as the most important plant model has also brought other crucifer species into the spotlight of comparative research. While the genus Capsella has become a prominent crucifer model system, its closest relative has been overlooked. The unispecific genus Catolobus is native to temperate Eurasian woodlands, from eastern Europe to the Russian Far East. Here, we analyzed chromosome number, genome structure, intraspecific genetic variation, and habitat suitability of Catolobus pendulus throughout its range. Unexpectedly, all analyzed populations were hypotetraploid (2n = 30, ~330 Mb). Comparative cytogenomic analysis revealed that the Catolobus genome arose by a whole-genome duplication in a diploid genome resembling Ancestral Crucifer Karyotype (ACK, n = 8). In contrast to the much younger Capsella allotetraploid genomes, the presumably autotetraploid Catolobus genome (2n = 32) arose early after the Catolobus/Capsella divergence. Since its origin, the tetraploid Catolobus genome has undergone chromosomal rediploidization, including a reduction in chromosome number from 2n = 32 to 2n = 30. Diploidization occurred through end-to-end chromosome fusion and other chromosomal rearrangements affecting a total of six of 16 ancestral chromosomes. The hypotetraploid Catolobus cytotype expanded toward its present range, accompanied by some longitudinal genetic differentiation. The sister relationship between Catolobus and Capsella allows comparative studies of tetraploid genomes of contrasting ages and different degrees of genome diploidization.
- Keywords
- Arabidopsis-related model systems, Brassicaceae, Cruciferae, Hyb-Seq, chromosome painting, diploidization, polyploidy, whole-genome duplication (WGD),
- Publication type
- Journal Article MeSH
Based on recent achievements in phylogenetic studies of the Brassicaceae, a novel infrafamilial classification is proposed that includes major improvements at the subfamilial and supertribal levels. Herein, the family is subdivided into two subfamilies, Aethionemoideae (subfam. nov.) and Brassicoideae. The Brassicoideae, with 57 of the 58 tribes of Brassicaceae, are further partitioned into five supertribes, including the previously recognized Brassicodae and the newly established Arabodae, Camelinodae, Heliophilodae, and Hesperodae. Additional tribus-level contributions include descriptions of the newly recognized Arabidopsideae, Asperuginoideae, Hemilophieae, Schrenkielleae, and resurrection of the Chamireae and Subularieae. Further detailed comments on 17 tribes in need of clarifications are provided.
- Keywords
- classification, subfamily, supertribe, taxonomy, tribe,
- Publication type
- Journal Article MeSH
BACKGROUND AND AIMS: Sexual reproduction is known to drive plant diversification and adaptation. Here we investigate the evolutionary history and spatiotemporal origin of a dodecaploid (2n = 12x = 96) Eurasian deciduous woodland species, Cardamine bulbifera, which reproduces and spreads via vegetative bulb-like structures only. The species has been among the most successful range-expanding understorey woodland plants in Europe, which raises the question of the genetic architecture of its gene pool, since its hexaploid (2n = 6x = 48) but putatively outcrossing closest relative, C. quinquefolia, displays a smaller distribution range in Eastern Europe towards the Caucasus region. Cardamine bulbifera belongs to a small monophyletic clade of four species comprising also C. abchasica (2n = 2x = 16) and C. bipinnata (unknown ploidy) from the Caucasus region. METHODS: We sequenced the genomes of the two polyploids and their two putative ancestors using Illumina short-read sequencing technology (×7-8 coverage). Covering the entire distribution range, genomic data were generated for 67 samples of the two polyploids (51 samples of C. bulbifera, 16 samples of C. quinquefolia) and 6 samples of the putative diploid taxa (4 samples of C. abchasica, 2 samples of C. bipinnata) to unravel the evolutionary origin of the polyploid taxa using phylogenetic reconstructions of biparentally and maternally inherited genetic sequence data. Ploidy levels of C. bulbifera and C. quinquefolia were analysed by comparative chromosome painting. We used genetic assignment analysis (STRUCTURE) and approximate Bayesian computation (ABC) modelling to test whether C. bulbifera represents genetically differentiated lineages and addressed the hypothesis of its hybrid origin. Comparative ecological modelling was applied to unravel possible niche differentiation among the two polyploid species. KEY RESULTS: Cardamine bulbifera was shown to be a non-hybridogenous, auto-dodecaploid taxon of early Pleistocene origin, but with a history of past gene flow with its hexaploid sister species C. quinquefolia, likely during the last glacial maximum in shared refuge areas in Eastern Europe towards Western Turkey and the Crimean Peninsula region. The diploid Caucasian endemic C. abchasica is considered an ancestral species, which also provides evidence for the origin of the species complex in the Caucasus region. Cardamine bulbifera successfully expanded its distribution range postglacially towards Central and Western Europe accompanied by a transition to exclusively vegetative propagation. CONCLUSIONS: A transition to vegetative propagation in C. bulbifera is hypothesized as the major innovation to rapidly expand its distribution range following postglacially progressing woodland vegetation throughout Europe. Preceding and introgressive gene flow from its sister species C. quinquefolia in the joint refuge area is documented. This transition and ecological differentiation may have been triggered by preceding introgressive gene flow from its sister species in the joint East European refuge areas.
- Keywords
- Cardamine bulbifera, chromosome painting, clonal reproduction, demographic history, ecological modelling, evolutionary history, genomics, polyploidy, postglacial expansion, reproductive shift,
- MeSH
- Bayes Theorem MeSH
- Cardamine * genetics MeSH
- Phylogeny MeSH
- Polyploidy MeSH
- Reproduction MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow ("cold") versus fast ("hot") genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.
The genus Camelina (Brassicaceae) comprises 7-8 diploid, tetraploid, and hexaploid species. Of particular agricultural interest is the biofuel crop, C. sativa (gold-of-pleasure or false flax), an allohexaploid domesticated from the widespread weed, C. microcarpa. Recent cytogenetics and genomics work has uncovered the identity of the parental diploid species involved in ancient polyploidization events in Camelina. However, little is known about the maternal subgenome ancestry of contemporary polyploid species. To determine the diploid maternal contributors of polyploid Camelina lineages, we sequenced and assembled 84 Camelina chloroplast genomes for phylogenetic analysis. Divergence time estimation was used to infer the timing of polyploidization events. Chromosome counts were also determined for 82 individuals to assess ploidy and cytotypic variation. Chloroplast genomes showed minimal divergence across the genus, with no observed gene-loss or structural variation. Phylogenetic analyses revealed C. hispida as a maternal diploid parent to the allotetraploid Camelina rumelica, and C. neglecta as the closest extant diploid contributor to the allohexaploids C. microcarpa and C. sativa. The tetraploid C. rumelica appears to have evolved through multiple independent hybridization events. Divergence times for polyploid lineages closely related to C. sativa were all inferred to be very recent, at only ~65 thousand years ago. Chromosome counts confirm that there are two distinct cytotypes within C. microcarpa (2n = 38 and 2n = 40). Based on these findings and other recent research, we propose a model of Camelina subgenome relationships representing our current understanding of the hybridization and polyploidization history of this recently-diverged genus.
- Publication type
- Journal Article MeSH
Most diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of 'genome shock', such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.
- MeSH
- Arabidopsis * genetics MeSH
- Diploidy MeSH
- Genome, Plant MeSH
- Hybridization, Genetic MeSH
- Humans MeSH
- Polyploidy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Parallel adaptation provides valuable insight into the predictability of evolutionary change through replicated natural experiments. A steadily increasing number of studies have demonstrated genomic parallelism, yet the magnitude of this parallelism varies depending on whether populations, species, or genera are compared. This led us to hypothesize that the magnitude of genomic parallelism scales with genetic divergence between lineages, but whether this is the case and the underlying evolutionary processes remain unknown. Here, we resequenced seven parallel lineages of two Arabidopsis species, which repeatedly adapted to challenging alpine environments. By combining genome-wide divergence scans with model-based approaches, we detected a suite of 151 genes that show parallel signatures of positive selection associated with alpine colonization, involved in response to cold, high radiation, short season, herbivores, and pathogens. We complemented these parallel candidates with published gene lists from five additional alpine Brassicaceae and tested our hypothesis on a broad scale spanning ∼0.02 to 18 My of divergence. Indeed, we found quantitatively variable genomic parallelism whose extent significantly decreased with increasing divergence between the compared lineages. We further modeled parallel evolution over the Arabidopsis candidate genes and showed that a decreasing probability of repeated selection on the same standing or introgressed alleles drives the observed pattern of divergence-dependent parallelism. We therefore conclude that genetic divergence between populations, species, and genera, affecting the pool of shared variants, is an important factor in the predictability of genome evolution.
- Keywords
- Arabidopsis, alpine adaptation, evolution, genomics, parallelism,
- MeSH
- Molecular Sequence Annotation MeSH
- Arabidopsis classification genetics metabolism radiation effects MeSH
- Biological Evolution * MeSH
- Herbivory physiology MeSH
- Adaptation, Physiological genetics MeSH
- Stress, Physiological MeSH
- Genetic Variation * MeSH
- Genetic Drift MeSH
- Genome, Plant * MeSH
- Genetic Introgression MeSH
- Gene Ontology MeSH
- Radiation, Ionizing MeSH
- Models, Genetic MeSH
- Cold Temperature MeSH
- Plant Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Plant Proteins MeSH
Pervasive hybridization and whole-genome duplications (WGDs) influenced genome evolution in several eukaryotic lineages. Although frequent and recurrent hybridizations may result in reticulate phylogenies, the evolutionary events underlying these reticulations, including detailed structure of the ancestral diploid and polyploid genomes, were only rarely reconstructed. Here, we elucidate the complex genomic history of a monophyletic clade from the mustard family (Brassicaceae), showing contentious relationships to the early-diverging clades of this model plant family. Genome evolution in the crucifer tribe Biscutelleae (∼60 species, 5 genera) was dominated by pervasive hybridizations and subsequent genome duplications. Diversification of an ancestral diploid genome into several divergent but crossable genomes was followed by hybridizations between these genomes. Whereas a single genus (Megadenia) remained diploid, the four remaining genera originated by allopolyploidy (Biscutella, Lunaria, Ricotia) or autopolyploidy (Heldreichia). The contentious relationships among the Biscutelleae genera, and between the tribe and other early diverged crucifer lineages, are best explained by close genomic relatedness among the recurrently hybridizing ancestral genomes. By using complementary cytogenomics and phylogenomics approaches, we demonstrate that the origin of a monophyletic plant clade can be more complex than a parsimonious assumption of a single WGD spurring postpolyploid cladogenesis. Instead, recurrent hybridization among the same and/or closely related parental genomes may phylogenetically interlink diploid and polyploid genomes despite the incidence of multiple independent WGDs. Our results provide new insights into evolution of early-diverging Brassicaceae lineages and elucidate challenges in resolving the contentious relationships within and between land plant lineages with pervasive hybridization and WGDs.
- Keywords
- chromosome rearrangements, diploidization, dysploidy, hybridization, phylogenetics, polyploidy, reticulate evolution, whole-genome duplication,
- MeSH
- Biological Evolution * MeSH
- Brassicaceae genetics MeSH
- Chromosomes, Plant * MeSH
- Gene Duplication MeSH
- Genome, Plant * MeSH
- Hybridization, Genetic MeSH
- Polyploidy * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH