Most cited article - PubMed ID 26822949
Hereditary truncating mutations of DNA repair and other genes in BRCA1/BRCA2/PALB2-negatively tested breast cancer patients
Unnafected female carriers of BRCA1 and BRCA2 pathogenic/likely pathogenic variants (P/LPVs) are at higher risk of breast cancer (BC) and ovarian cancer (OC). In the retrospective single-institution study in the Czech Republic, we analyzed the rate, longitudinal trends, and effectiveness of prophylactic risk-reducing mastectomy (RRM) and risk-reducing salpingo-oophorectomy (RRSO) on the incidence of BC and OC in BRCA1/2 carriers diagnosed between years (y) 2000 to 2020. The study included 496 healthy female BRCA1/2 carriers. The median follow-up was 6.0 years. RRM was performed in 156 (31.5%, mean age 39.3 y, range 22-61 y) and RRSO in 234 (47.2%, mean age 43.2 y, range 28-64 y) BRCA1/2 carriers. A statistically significant increase of RRM (from 12% to 29%) and RRSO (from 31% to 42%) was observed when comparing periods 2005-2012 and 2013-2020 (p < 0.001). BC developed in 15.9% of BRCA1/2 carriers without RRM vs. 0.6% of BRCA1/2 carriers after RRM (HR 20.18, 95% CI 2.78- 146.02; p < 0.001). OC was diagnosed in 4.3% vs. 0% of BRCA1/2 carriers without vs. after RRSO (HR not defined due to 0% occurrence in the RRSO group, p < 0.001). Study results demonstrate a significant increase in the rate of prophylactic surgeries in BRCA1/2 healthy carriers after 2013 and the effectiveness of RRM and RRSO on the incidence of BC and OC in these populations.
- Keywords
- Angelina Jolie effect, BRCA1, BRCA2, breast cancer, cancer prevention, ovarian cancer, risk-reducing mastectomy, risk-reducing salpingo-oophorectomy,
- Publication type
- Journal Article MeSH
Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.
- Keywords
- CHEK2, CHK2, KAP1, WIP1, breast cancer, checkpoint kinase 2, colorectal cancer, germline mutation, hereditary cancer, prostate cancer, renal cancer, thyroid cancer,
- MeSH
- Checkpoint Kinase 2 chemistry genetics metabolism MeSH
- Genetic Predisposition to Disease * MeSH
- Humans MeSH
- Mutation Rate MeSH
- Neoplasms enzymology genetics MeSH
- Substrate Specificity MeSH
- Germ-Line Mutation genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Checkpoint Kinase 2 MeSH
- CHEK2 protein, human MeSH Browser
Cutaneous melanoma is the deadliest skin malignity with a rising prevalence worldwide. Patients carrying germline mutations in melanoma-susceptibility genes face an increased risk of melanoma and other cancers. To assess the spectrum of germline variants, we analyzed 264 Czech melanoma patients indicated for testing due to early melanoma (at <25 years) or the presence of multiple primary melanoma/melanoma and other cancer in their personal and/or family history. All patients were analyzed by panel next-generation sequencing targeting 217 genes in four groups: high-to-moderate melanoma risk genes, low melanoma risk genes, cancer syndrome genes, and other genes with an uncertain melanoma risk. Population frequencies were assessed in 1479 population-matched controls. Selected POT1 and CHEK2 variants were characterized by functional assays. Mutations in clinically relevant genes were significantly more frequent in melanoma patients than in controls (31/264; 11.7% vs. 58/1479; 3.9%; p = 2.0 × 10-6). A total of 9 patients (3.4%) carried mutations in high-to-moderate melanoma risk genes (CDKN2A, POT1, ACD) and 22 (8.3%) patients in other cancer syndrome genes (NBN, BRCA1/2, CHEK2, ATM, WRN, RB1). Mutations in high-to-moderate melanoma risk genes (OR = 52.2; 95%CI 6.6-413.1; p = 3.2 × 10-7) and in other cancer syndrome genes (OR = 2.3; 95%CI 1.4-3.8; p = 0.003) were significantly associated with melanoma risk. We found an increased potential to carry these mutations (OR = 2.9; 95%CI 1.2-6.8) in patients with double primary melanoma, melanoma and other primary cancer, but not in patients with early age at onset. The analysis revealed affected genes in Czech melanoma patients and identified individuals who may benefit from genetic testing and future surveillance management of mutation carriers.
- Keywords
- NGS, familial melanoma, germline mutations, hereditary cancer predisposition, melanoma, panel sequencing,
- Publication type
- Journal Article MeSH
Breast cancer (BC) prognosis in BRCA1 and BRCA2 mutation carriers has been reported contradictorily, and the significance of variables influencing prognosis in sporadic BC is not established in BC patients with hereditary BRCA1/BRCA2 mutations. In this retrospective cohort study, we analyzed the effect of clinicopathological characteristics on BC prognosis (disease-free survival [DFS] and disease-specific survival [DSS]) in hereditary BRCA1/BRCA2 mutation carriers. We enrolled 234 BRCA1/BRCA2 mutation carriers and 899 non-carriers, of whom 191 carriers and 680 non-carriers, with complete data, were available for survival analyses. We found that patients with ER-positive tumors developed disease recurrence 2.3-times more likely when they carried a BRCA1/BRCA2 mutation (23/60; 38.3% ER-positive carriers vs. 74/445; 16.6% ER-positive non-carriers; p < 0.001). ER-positive mutation carriers also had a 3.4-times higher risk of death due to BC compared with ER-positive non-carriers (13/60; 21.7% vs. 28/445; 6.3%; p < 0.001). Moreover, prognosis in ER-negative BRCA1/BRCA2 mutation carriers was comparable with that in ER-positive non-carriers. Our study demonstrates that ER-positivity worsens BC prognosis in BRCA1/BRCA2 mutation carriers, while prognosis for carriers with ER-negative tumors (including early-onset) is significantly better and comparable with that in ER-positive, older BC non-carriers. These observations indicate that BRCA1/BRCA2 mutation carriers with ER-positive BC represent high-risk patients.
- Keywords
- BRCA1, BRCA2, breast cancer, estrogen receptor, germline mutations, survival,
- Publication type
- Journal Article MeSH
The aim of our study was to set up a panel for targeted sequencing of chemoresistance genes and the main transcription factors driving their expression and to evaluate their predictive and prognostic value in breast cancer patients. Coding and regulatory regions of 509 genes, selected from PharmGKB and Phenopedia, were sequenced using massive parallel sequencing in blood DNA from 105 breast cancer patients in the testing phase. In total, 18,245 variants were identified of which 2565 were novel variants (without rs number in dbSNP build 150) in the testing phase. Variants with major allele frequency over 0.05 were further prioritized for validation phase based on a newly developed decision tree. Using emerging in silico tools and pharmacogenomic databases for functional predictions and associations with response to cytotoxic therapy or disease-free survival of patients, 55 putative variants were identified and used for validation in 805 patients with clinical follow up using KASPTM technology. In conclusion, associations of rs2227291, rs2293194, and rs4376673 (located in ATP7A, KCNAB1, and DFFB genes, respectively) with response to neoadjuvant cytotoxic therapy and rs1801160 in DPYD with disease-free survival of patients treated with cytotoxic drugs were validated and should be further functionally characterized.
- Keywords
- breast cancer, chemoresistance, in silico prediction, next generation sequencing, pharmacogenomics,
- Publication type
- Journal Article MeSH
The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5' noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency < 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C>T and PAX5 binding to BRCA2:c.-296C>T. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC.
- Keywords
- BRCA1, BRCA2, breast cancer, promoter, transcription, variants of unknown clinical significance (VUS),
- MeSH
- 5' Untranslated Regions MeSH
- PAX5 Transcription Factor metabolism MeSH
- CCAAT-Binding Factor metabolism MeSH
- Genetic Predisposition to Disease MeSH
- Humans MeSH
- MCF-7 Cells MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms genetics MeSH
- Promoter Regions, Genetic * MeSH
- BRCA1 Protein chemistry genetics metabolism MeSH
- BRCA2 Protein chemistry genetics metabolism MeSH
- Protein Binding MeSH
- Age of Onset MeSH
- Germ-Line Mutation * MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 5' Untranslated Regions MeSH
- PAX5 Transcription Factor MeSH
- BRCA1 protein, human MeSH Browser
- BRCA2 protein, human MeSH Browser
- CCAAT-Binding Factor MeSH
- NFYA protein, human MeSH Browser
- PAX5 protein, human MeSH Browser
- BRCA1 Protein MeSH
- BRCA2 Protein MeSH
BACKGROUND: Carriers of mutations in hereditary cancer predisposition genes represent a small but clinically important subgroup of oncology patients. The identification of causal germline mutations determines follow-up management, treatment options and genetic counselling in patients' families. Targeted next-generation sequencing-based analyses using cancer-specific panels in high-risk individuals have been rapidly adopted by diagnostic laboratories. While the use of diagnosis-specific panels is straightforward in typical cases, individuals with unusual phenotypes from families with overlapping criteria require multiple panel testing. Moreover, narrow gene panels are limited by our currently incomplete knowledge about possible genetic dispositions. METHODS: We have designed a multi-gene panel called CZECANCA (CZEch CAncer paNel for Clinical Application) for a sequencing analysis of 219 cancer-susceptibility and candidate predisposition genes associated with frequent hereditary cancers. RESULTS: The bioanalytical and bioinformatics pipeline was validated on a set of internal and commercially available DNA controls showing high coverage uniformity, sensitivity, specificity and accuracy. The panel demonstrates a reliable detection of both single nucleotide and copy number variants. Inter-laboratory, intra- and inter-run replicates confirmed the robustness of our approach. CONCLUSION: The objective of CZECANCA is a nationwide consolidation of cancer-predisposition genetic testing across various clinical indications with savings in costs, human labor and turnaround time. Moreover, the unified diagnostics will enable the integration and analysis of genotypes with associated phenotypes in a national database improving the clinical interpretation of variants.
- MeSH
- Neoplastic Syndromes, Hereditary genetics MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Association Studies MeSH
- Genetic Testing MeSH
- Humans MeSH
- INDEL Mutation MeSH
- Mutation MeSH
- Biomarkers, Tumor * MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- DNA Copy Number Variations MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing * methods standards MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers, Tumor * MeSH
The increasing application of gene panels for familial cancer susceptibility disorders will probably lead to an increased proposal of susceptibility gene candidates. Using ERCC2 DNA repair gene as an example, we show that proof of a possible role in cancer susceptibility requires a detailed dissection and characterization of the underlying mutations for genes with diverse cellular functions (in this case mainly DNA repair and basic cellular transcription). In case of ERCC2, panel sequencing of 1345 index cases from 587 German, 405 Lithuanian and 353 Czech families with breast and ovarian cancer (BC/OC) predisposition revealed 25 mutations (3 frameshift, 2 splice-affecting, 20 missense), all absent or very rare in the ExAC database. While 16 mutations were unique, 9 mutations showed up repeatedly with population-specific appearance. Ten out of eleven mutations that were tested exemplarily in cell-based functional assays exert diminished excision repair efficiency and/or decreased transcriptional activation capability. In order to provide evidence for BC/OC predisposition, we performed familial segregation analyses and screened ethnically matching controls. However, unlike the recently published RECQL example, none of our recurrent ERCC2 mutations showed convincing co-segregation with BC/OC or significant overrepresentation in the BC/OC cohort. Interestingly, we detected that some deleterious founder mutations had an unexpectedly high frequency of > 1% in the corresponding populations, suggesting that either homozygous carriers are not clinically recognized or homozygosity for these mutations is embryonically lethal. In conclusion, we provide a useful resource on the mutational landscape of ERCC2 mutations in hereditary BC/OC patients and, as our key finding, we demonstrate the complexity of correct interpretation for the discovery of "bonafide" breast cancer susceptibility genes.
- MeSH
- Genetic Predisposition to Disease * MeSH
- Heterozygote MeSH
- Humans MeSH
- Mutation, Missense MeSH
- Breast Neoplasms genetics pathology MeSH
- Ovarian Neoplasms genetics pathology MeSH
- DNA Repair genetics MeSH
- Xeroderma Pigmentosum Group D Protein chemistry genetics MeSH
- Germ-Line Mutation MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ERCC2 protein, human MeSH Browser
- Xeroderma Pigmentosum Group D Protein MeSH