Most cited article - PubMed ID 27325098
In situ mapping of the energy flow through the entire photosynthetic apparatus
Copper indium sulfide (CIS) nanocrystals constitute a promising alternative to cadmium- and lead-containing nanoparticles. We report a synthetic method that yields hydrophilic, core-only CIS quantum dots, exhibiting size-dependent, copper-deficient composition and optical properties that are suitable for direct coupling to biomolecules and nonradiative energy transfer applications. To assist such applications, we complemented previous studies covering the femtosecond-picosecond time scale with the investigation of slower radiative and nonradiative processes on the nanosecond time scale, using both time-resolved emission and transient absorption. As expected for core particles, relaxation occurs mainly nonradiatively, resulting in low, size-dependent photoluminescence quantum yield. The nonradiative relaxation from the first excited band is wavelength-dependent with lifetimes between 25 and 150 ns, reflecting the size distribution of the particles. Approximately constant lifetimes of around 65 ns were observed for nonradiative relaxation from the defect states at lower energies. The photoluminescence exhibited a large Stokes shift. The band gap emission decays on the order of 10 ns, while the defect emission is further red-shifted, and the lifetimes are on the order of 100 ns. Both sets of radiative lifetimes are wavelength-dependent, increasing toward longer wavelengths. Despite the low radiative quantum yield, the aqueous solubility and long lifetimes of the defect states are compatible with the proposed role of CIS quantum dots as excitation energy donors to biological molecules.
- Publication type
- Journal Article MeSH
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna "designs" becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
- Keywords
- bacteriochlorophylls, carotenoids, chlorophylls, excitation energy transfer, light-harvesting complexes, photoprotection, photosynthesis, photosystems, pigment-protein complexes,
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Photosynthesis MeSH
- Protein Conformation MeSH
- Models, Molecular MeSH
- Protein Multimerization MeSH
- Energy Transfer MeSH
- Plant Proteins chemistry metabolism MeSH
- Plants metabolism MeSH
- Cyanobacteria metabolism MeSH
- Light-Harvesting Protein Complexes chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Plant Proteins MeSH
- Light-Harvesting Protein Complexes MeSH
Chlorosomes are the main light-harvesting complexes of green photosynthetic bacteria that are adapted to a phototrophic life at low-light conditions. They contain a large number of bacteriochlorophyll c, d, or e molecules organized in self-assembling aggregates. Tight packing of the pigments results in strong excitonic interactions between the monomers, which leads to a redshift of the absorption spectra and excitation delocalization. Due to the large amount of disorder present in chlorosomes, the extent of delocalization is limited and further decreases in time after excitation. In this work we address the question whether the excitonic interactions between the bacteriochlorophyll c molecules are strong enough to maintain some extent of delocalization even after exciton relaxation. That would manifest itself by collective spontaneous emission, so-called superradiance. We show that despite a very low fluorescence quantum yield and short excited state lifetime, both caused by the aggregation, chlorosomes indeed exhibit superradiance. The emission occurs from states delocalized over at least two molecules. In other words, the dipole strength of the emissive states is larger than for a bacteriochlorophyll c monomer. This represents an important functional mechanism increasing the probability of excitation energy transfer that is vital at low-light conditions. Similar behaviour was observed also in one type of artificial aggregates, and this may be beneficial for their potential use in artificial photosynthesis.
- MeSH
- Bacteria metabolism MeSH
- Bacterial Proteins metabolism MeSH
- Bacteriochlorophylls metabolism MeSH
- Pigments, Biological metabolism MeSH
- Photosynthesis * MeSH
- Energy Transfer MeSH
- Protein Aggregates * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- bacteriochlorophyll c MeSH Browser
- Bacterial Proteins MeSH
- Bacteriochlorophylls MeSH
- Pigments, Biological MeSH
- Protein Aggregates * MeSH
Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.
- MeSH
- Algorithms MeSH
- Photosynthesis * MeSH
- Quantum Theory * MeSH
- Energy Transfer * MeSH
- Spectrum Analysis MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Models, Theoretical MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Light-Harvesting Protein Complexes MeSH