Nejvíce citovaný článek - PubMed ID 27423490
During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura picta and Coleonyx variegatus) and the painted turtle (Chrysemys picta). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet, which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.
- Klíčová slova
- DSBs, bouquet, gametogenesis, meiosis, micro-chromosomes, recombination, reptile,
- Publikační typ
- časopisecké články MeSH
Until recently, the field of sex chromosome evolution has been dominated by the canonical unidirectional scenario, first developed by Muller in 1918. This model postulates that sex chromosomes emerge from autosomes by acquiring a sex-determining locus. Recombination reduction then expands outwards from this locus, to maintain its linkage with sexually antagonistic/advantageous alleles, resulting in Y or W degeneration and potentially culminating in their disappearance. Based mostly on empirical vertebrate research, we challenge and expand each conceptual step of this canonical model and present observations by numerous experts in two parts of a theme issue of Phil. Trans. R. Soc. B. We suggest that greater theoretical and empirical insights into the events at the origins of sex-determining genes (rewiring of the gonadal differentiation networks), and a better understanding of the evolutionary forces responsible for recombination suppression are required. Among others, crucial questions are: Why do sex chromosome differentiation rates and the evolution of gene dose regulatory mechanisms between male versus female heterogametic systems not follow earlier theory? Why do several lineages not have sex chromosomes? And: What are the consequences of the presence of (differentiated) sex chromosomes for individual fitness, evolvability, hybridization and diversification? We conclude that the classical scenario appears too reductionistic. Instead of being unidirectional, we show that sex chromosome evolution is more complex than previously anticipated and principally forms networks, interconnected to potentially endless outcomes with restarts, deletions and additions of new genomic material. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
- Klíčová slova
- evolution, sex chromosomes, sex determination, vertebrates,
- MeSH
- biologická evoluce * MeSH
- obratlovci genetika růst a vývoj MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
- Klíčová slova
- evolution, genomics, reproduction, sex chromosomes, sex determination, vertebrates,
- MeSH
- biologická evoluce * MeSH
- délka genomu * MeSH
- molekulární evoluce MeSH
- obratlovci genetika MeSH
- ovarium růst a vývoj MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví * MeSH
- sexuální diferenciace genetika MeSH
- testis růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Amniotes possess astonishing variability in sex determination ranging from environmental sex determination (ESD) to genotypic sex determination (GSD) with highly differentiated sex chromosomes. Geckos are one of the few amniote groups with substantial variability in sex determination. What makes them special in this respect? We hypothesized that the extraordinary variability of sex determination in geckos can be explained by two alternatives: 1) unusual lability of sex determination, predicting that the current GSD systems were recently formed and are prone to turnovers; and 2) independent transitions from the ancestral ESD to later stable GSD, which assumes that geckos possessed ancestrally ESD, but once sex chromosomes emerged, they remain stable in the long term. Here, based on genomic data, we document that the differentiated ZZ/ZW sex chromosomes evolved within carphodactylid geckos independently from other gekkotan lineages and remained stable in the genera Nephrurus, Underwoodisaurus, and Saltuarius for at least 15 Myr and potentially up to 45 Myr. These results together with evidence for the stability of sex chromosomes in other gekkotan lineages support more our second hypothesis suggesting that geckos do not dramatically differ from the evolutionary transitions in sex determination observed in the majority of the amniote lineages.
- Klíčová slova
- DNA-seq, genomics, qPCR, reptiles, sex chromosomes, sex determination,
- MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- ještěři * genetika MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Asian box turtle genus Cuora currently comprises 13 species with a wide distribution in Southeast Asia, including China and the islands of Indonesia and Philippines. The populations of these species are rapidly declining due to human pressure, including pollution, habitat loss, and harvesting for food consumption. Notably, the IUCN Red List identifies almost all species of the genus Cuora as Endangered (EN) or Critically Endangered (CR). In this study, we explore the karyotypes of 10 Cuora species with conventional (Giemsa staining, C-banding, karyogram reconstruction) and molecular cytogenetic methods (in situ hybridization with probes for rDNA loci and telomeric repeats). Our study reveals a diploid chromosome number of 2n = 52 chromosomes in all studied species, with karyotypes of similar chromosomal morphology. In all examined species, rDNA loci are detected at a single medium-sized chromosome pair and the telomeric repeats are restricted to the expected terminal position across all chromosomes. In contrast to a previous report, sex chromosomes are neither detected in Cuoragalbinifrons nor in any other species. Therefore, we assume that these turtles have either environmental sex determination or genotypic sex determination with poorly differentiated sex chromosomes. The conservation of genome organization could explain the numerous observed cases of interspecific hybridization both within the genus Cuora and across geoemydid turtles.
- Klíčová slova
- C-banding, Cuora, FISH, Geoemydidae, evolution, heterochromatin, karyotype, microsatellites, rDNA, telomeres,
- MeSH
- cytogenetické vyšetření * MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp MeSH
- mikrosatelitní repetice MeSH
- molekulární evoluce MeSH
- pruhování chromozomů MeSH
- ribozomální DNA genetika MeSH
- taxonomické DNA čárové kódování MeSH
- telomery MeSH
- želvy klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
Dragon lizards (Squamata: Agamidae) comprise about 520 species in six subfamilies distributed across Asia, Australasia and Africa. Only five species are known to have sex chromosomes. All of them possess ZZ/ZW sex chromosomes, which are microchromosomes in four species from the subfamily Amphibolurinae, but much larger in Phrynocephalus vlangalii from the subfamily Agaminae. In most previous studies of these sex chromosomes, the focus has been on Australian species from the subfamily Amphibolurinae, but only the sex chromosomes of the Australian central bearded dragon (Pogona vitticeps) are well-characterized cytogenetically. To determine the level of synteny of the sex chromosomes of P. vitticeps across agamid subfamilies, we performed cross-species two-colour FISH using two bacterial artificial chromosome (BAC) clones from the pseudo-autosomal regions of P. vitticeps. We mapped these two BACs across representative species from all six subfamilies as well as two species of chameleons, the sister group to agamids. We found that one of these BAC sequences is conserved in macrochromosomes and the other in microchromosomes across the agamid lineages. However, within the Amphibolurinae, there is evidence of multiple chromosomal rearrangements with one of the BACs mapping to the second-largest chromosome pair and to the microchromosomes in multiple species including the sex chromosomes of P. vitticeps. Intriguingly, no hybridization signal was observed in chameleons for either of these BACs, suggesting a likely agamid origin of these sequences. Our study shows lineage-specific evolution of sequences/syntenic blocks and successive rearrangements and reveals a complex history of sequences leading to their association with important biological processes such as the evolution of sex chromosomes and sex determination.
- Klíčová slova
- BACs, FISH, agamid lizards, evolution, sex chromosomes, synteny,
- MeSH
- analýza určování pohlaví metody MeSH
- cytogenetika metody MeSH
- hadi genetika růst a vývoj MeSH
- ještěři genetika růst a vývoj MeSH
- karyotypizace MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví genetika MeSH
- syntenie genetika MeSH
- umělé bakteriální chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Turtles, a speciose group consisting of more than 300 species, demonstrate karyotypes with diploid chromosome numbers ranging from 2n = 26 to 2n = 68. However, cytogenetic analyses have been conducted only to 1/3rd of the turtle species, often limited to conventional staining methods. In order to expand our knowledge of the karyotype evolution in turtles, we examined the topology of the (TTAGGG)n telomeric repeats and the rDNA loci by fluorescence in situ hybridization (FISH) on the karyotypes of two emydids: the Sicilian pond turtle, Emys trinacris, and the yellow-bellied slider, Trachemys scripta scripta (family Emydidae). Furthermore, AT-rich and GC-rich chromosome regions were detected by DAPI and CMA3 stains, respectively. The cytogenetic analysis revealed that telomeric sequences are restricted to the terminal ends of all chromosomes and the rDNA loci are localized in one pair of microchromosomes in both species. The karyotype of the Sicilian endemic E. trinacris with diploid number 2n = 50, consisting of 13 pairs of macrochromosomes and 12 pairs of microchromosomes, is presented here for first time. Our comparative examination revealed similar cytogenetic features in Emys trinacris and the closely related E. orbicularis, as well as to other previously studied emydid species, demonstrating a low rate of karyotype evolution, as chromosomal rearrangements are rather infrequent in this group of turtles.
- Klíčová slova
- Emys trinacris, FISH, Trachemys scripta scripta, karyotype, rDNA, telomeric sequences,
- MeSH
- cytogenetika metody MeSH
- hybridizace in situ fluorescenční metody MeSH
- karyotyp * MeSH
- molekulární evoluce * MeSH
- ribozomální DNA genetika MeSH
- telomery genetika MeSH
- želvy genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.
- Klíčová slova
- FISH, ITRs, ITSs, evolution, in situ hybridization, interstitial telomeric repeats, interstitial telomeric sequences, karyotype, telomeres, turtles,
- MeSH
- centromera genetika MeSH
- hadi genetika MeSH
- hybridizace in situ fluorescenční MeSH
- ještěři genetika MeSH
- karyotyp MeSH
- pohlavní chromozomy genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- telomery genetika MeSH
- želvy genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Turtles demonstrate variability in sex determination and, hence, constitute an excellent model for the evolution of sex chromosomes. Notably, the sex determination of the freshwater turtles from the family Chelidae, a species-rich group with wide geographical distribution in the southern hemisphere, is still poorly explored. Here we documented the presence of an XX/XY sex determination system in seven species of the Australasian chelid genera Chelodina, Emydura, and Elseya by conventional (karyogram reconstruction, C-banding) and molecular cytogenetic methods (comparative genome hybridization, in situ hybridization with probes specific for GATA microsatellite motif, the rDNA loci, and the telomeric repeats). The sex chromosomes are microchromosomes in all examined species of the genus Chelodina. In contrast, the sex chromosomes are the 4th largest pair of macrochromosomes in the genera Emydura and Elseya. Their X chromosomes are submetacentric, while their Y chromosomes are metacentric. The chelid Y chromosomes contain a substantial male-specific genomic region with an accumulation of the GATA microsatellite motif, and occasionally, of the rDNA loci and telomeric repeats. Despite morphological differences between sex chromosomes, we conclude that male heterogamety was likely already present in the common ancestor of Chelodina, Emydura and Elseya in the Mesozoic period.
- MeSH
- chromozom X genetika MeSH
- chromozom Y genetika MeSH
- genom * MeSH
- karyotyp MeSH
- mikrosatelitní repetice MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví MeSH
- želvy MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH