Nejvíce citovaný článek - PubMed ID 27867072
INTRODUCTION: Left bundle branch area pacing (LBBAP) comprises pacing at the left ventricular septum (LVSP) or left bundle branch (LBBP). The aim of the present study was to investigate the differences in ventricular electrical heterogeneity between LVSP, LBBP, right ventricular pacing (RVP) and intrinsic conduction with different dyssynchrony measures using the ECG, vectorcardiograpy, ECG belt, and Ultrahigh frequency (UHF-)ECG. METHODS: Thirty-seven patients with a pacemaker indication for bradycardia or cardiac resynchronization therapy underwent LBBAP implantation. ECG, vectorcardiogram, ECG belt and UHF-ECG signals were recorded during RVP, LVSP and LBBP, and intrinsic activation. QRS duration (QRSd) was measured from the ECG, QRS area was calculated from the vectorcardiogram, LV activation time (LVAT) and standard deviation of activation time (SDAT) from ECG belt and electrical dyssynchrony (e-DYS16) from UHF-ECG. RESULTS: Both LVSP and LBBP significantly reduced ventricular electrical heterogeneity as compared to underlying LBBB and RV pacing in terms of QRS area (p < .001), SDAT (p < .001), LVAT (p < .001) and e-DYS16 (p < .001). QRSd was only reduced as compared to RV pacing(p < .001). QRS area was similar during LBBP and normal intrinsic conduction, e-DYS16 was similar during LVSP and normal intrinsic conduction, whereas SDAT was similar for LVSP, LBBP and normal intrinsic conduction. For all these variables there was no significant difference between LVSP and LBBP. CONCLUSION: Both LVSP and LBBP resulted in a more synchronous LV activation than LBBB and RVP. Especially LBBP resulted in levels of LV synchrony comparable to normal intrinsic conduction.
- Klíčová slova
- bradycardia pacing, cardiac resynchronization therapy, conduction system pacing, dyssynchrony, left bundle branch area pacing,
- MeSH
- akční potenciály * MeSH
- blokáda Tawarova raménka patofyziologie terapie diagnóza MeSH
- bradykardie patofyziologie terapie diagnóza MeSH
- časové faktory MeSH
- elektrofyziologické techniky kardiologické MeSH
- elektrokardiografie MeSH
- funkce levé komory srdeční * MeSH
- Hisův svazek * patofyziologie MeSH
- kardiostimulace umělá * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezikomorová přepážka * patofyziologie MeSH
- prediktivní hodnota testů * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- srdeční frekvence * MeSH
- srdeční resynchronizační terapie MeSH
- vektorkardiografie * metody MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Identifying electrical dyssynchrony is crucial for cardiac pacing and cardiac resynchronization therapy (CRT). The ultra-high-frequency electrocardiography (UHF-ECG) technique allows instantaneous dyssynchrony analyses with real-time visualization. This review explores the physiological background of higher frequencies in ventricular conduction and the translational evolution of UHF-ECG in cardiac pacing and CRT. Although high-frequency components were studied half a century ago, their exploration in the dyssynchrony context is rare. UHF-ECG records ECG signals from eight precordial leads over multiple beats in time. After initial conceptual studies, the implementation of an instant visualization of ventricular activation led to clinical implementation with minimal patient burden. UHF-ECG aids patient selection in biventricular CRT and evaluates ventricular activation during various forms of conduction system pacing (CSP). UHF-ECG ventricular electrical dyssynchrony has been associated with clinical outcomes in a large retrospective CRT cohort and has been used to study the electrophysiological differences between CSP methods, including His bundle pacing, left bundle branch (area) pacing, left ventricular septal pacing and conventional biventricular pacing. UHF-ECG can potentially be used to determine a tailored resynchronization approach (CRT through biventricular pacing or CSP) based on the electrical substrate (true LBBB vs. non-specified intraventricular conduction delay with more distal left ventricular conduction disease), for the optimization of CRT and holds promise beyond CRT for the risk stratification of ventricular arrhythmias.
- Klíčová slova
- cardiac resynchronization therapy, conduction system pacing, electrical dyssynchrony, electrocardiography, ultra-high frequency,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
AIMS: The standard deviation of activation time (SDAT) derived from body surface maps (BSMs) has been proposed as an optimal measure of electrical dyssynchrony in patients with cardiac resynchronization therapy (CRT). The goal of this study was two-fold: (i) to compare the values of SDAT in individual CRT patients with reconstructed myocardial metrics of depolarization heterogeneity using an inverse solution algorithm and (ii) to compare SDAT calculated from 96-lead BSM with a clinically easily applicable 12-lead electrocardiogram (ECG). METHODS AND RESULTS: Cardiac resynchronization therapy patients with sinus rhythm and left bundle branch block at baseline (n = 19, 58% males, age 60 ± 11 years, New York Heart Association Classes II and III, QRS 167 ± 16) were studied using a 96-lead BSM. The activation time (AT) was automatically detected for each ECG lead, and SDAT was calculated using either 96 leads or standard 12 leads. Standard deviation of activation time was assessed in sinus rhythm and during six different pacing modes, including atrial pacing, sequential left or right ventricular, and biventricular pacing. Changes in SDAT calculated both from BSM and from 12-lead ECG corresponded to changes in reconstructed myocardial ATs. A high degree of reliability was found between SDAT values obtained from 12-lead ECG and BSM for different pacing modes, and the intraclass correlation coefficient varied between 0.78 and 0.96 (P < 0.001). CONCLUSION: Standard deviation of activation time measurement from BSM correlated with reconstructed myocardial ATs, supporting its utility in the assessment of electrical dyssynchrony in CRT. Importantly, 12-lead ECG provided similar information as BSM. Further prospective studies are necessary to verify the clinical utility of SDAT from 12-lead ECG in larger patient cohorts, including those with ischaemic cardiomyopathy.
- Klíčová slova
- AV delay optimization, Body surface potential mapping, Cardiac resynchronization therapy, ECG imaging, Heart failure, LV lead positioning,
- MeSH
- elektrokardiografie MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- prostředky srdeční resynchronizační terapie MeSH
- reprodukovatelnost výsledků MeSH
- senioři MeSH
- srdeční arytmie terapie MeSH
- srdeční resynchronizační terapie * metody MeSH
- srdeční selhání * diagnóza terapie MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The majority of patients tolerate right ventricular pacing well; however, some patients manifest signs of heart failure after pacemaker implantation and develop pacing-induced cardiomyopathy. This is a consequence of non-physiological ventricular activation bypassing the conduction system. Ventricular dyssynchrony was identified as one of the main factors responsible for pacing-induced cardiomyopathy development. Currently, methods that would allow rapid and reliable ventricular dyssynchrony assessment, ideally during the implant procedure, are lacking. Paced QRS duration is an imperfect marker of dyssynchrony, and methods based on body surface mapping, electrocardiographic imaging or echocardiography are laborious and time-consuming, and can be difficult to use during the implantation procedure. However, the ventricular activation sequence can be readily displayed from the chest leads using an ultra-high-frequency ECG. It can be performed during the implantation procedure to visualise ventricular depolarisation and resultant ventricular dyssynchrony during pacing. This information can assist the electrophysiologist in selecting a pacing location that avoids dyssynchronous ventricular activation.
- Klíčová slova
- Pacing-induced cardiomyopathy, cardiac pacing, ultra-high-frequency ECG, ventricular dyssynchrony assessment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper reviews the current status of the knowledge on body surface potential mapping (BSPM) and ECG imaging (ECGI) methods for patient selection, left ventricular (LV) lead positioning, and optimisation of CRT programming, to indicate the major trends and future perspectives for the application of these methods in CRT patients. A systematic literature review using PubMed, Scopus, and Web of Science was conducted to evaluate the available clinical evidence regarding the usage of BSPM and ECGI methods in CRT patients. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement was used as a basis for this review. BSPM and ECGI methods applied in CRT patients were assessed, and quantitative parameters of ventricular depolarisation delivered from BSPM and ECGI were extracted and summarised. BSPM and ECGI methods can be used in CRT in several ways, namely in predicting CRT outcome, in individualised optimisation of CRT device programming, and the guiding of LV electrode placement, however, further prospective or randomised trials are necessary to verify the utility of BSPM for routine clinical practice.
- Klíčová slova
- Body surface potential mapping, CRT, ECG imaging, heart failure,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH