Nejvíce citovaný článek - PubMed ID 27905555
The complex nature of calcium cation interactions with phospholipid bilayers
Calmodulin (CaM) is a ubiquitous calcium-sensitive messenger in eukaryotic cells. It was previously shown that CaM possesses an affinity for diverse lipid moieties, including those found on CaM-binding proteins. These facts, together with our observation that CaM accumulates in membrane-rich protrusions of HeLa cells upon increased cytosolic calcium, motivated us to perform a systematic search for unmediated CaM interactions with model lipid membranes mimicking the cytosolic leaflet of plasma membranes. A range of experimental techniques and molecular dynamics simulations prove unambiguously that CaM interacts with lipid bilayers in the presence of calcium ions. The lipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) hold the key to CaM-membrane interactions. Calcium induces an essential conformational rearrangement of CaM, but calcium binding to the headgroup of PS also neutralizes the membrane negative surface charge. More intriguingly, PE plays a dual role-it not only forms hydrogen bonds with CaM, but also destabilizes the lipid bilayer increasing the exposure of hydrophobic acyl chains to the interacting proteins. Our findings suggest that upon increased intracellular calcium concentration, CaM and the cytosolic leaflet of cellular membranes can be functionally connected.
- Klíčová slova
- calcium, calmodulin, lipid membrane, phosphatidylethanolamine, phosphatidylserine,
- MeSH
- buněčná membrána * metabolismus MeSH
- cytosol * metabolismus MeSH
- fosfatidylethanolaminy metabolismus MeSH
- fosfatidylseriny * metabolismus MeSH
- HeLa buňky MeSH
- kalmodulin * metabolismus chemie MeSH
- lidé MeSH
- lipidové dvojvrstvy * metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- vápník * metabolismus MeSH
- vazba proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylethanolaminy MeSH
- fosfatidylseriny * MeSH
- kalmodulin * MeSH
- lipidové dvojvrstvy * MeSH
- phosphatidylethanolamine MeSH Prohlížeč
- vápník * MeSH
Ethylenediaminetetraacetic acid (EDTA) is frequently used in lipid experiments to remove redundant ions, such as Ca2+, from the sample solution. In this work, combining molecular dynamics (MD) simulations and Langmuir monolayer experiments, we show that on top of the expected Ca2+ depletion, EDTA anions themselves bind to phosphatidylcholine (PC) monolayers. This binding, originating from EDTA interaction with choline groups of PC lipids, leads to the adsorption of EDTA anions at the monolayer surface and concentration-dependent changes in surface pressure as measured by monolayer experiments and explained by MD simulations. This surprising observation emphasizes that lipid experiments carried out using EDTA-containing solutions, especially of high concentrations, must be interpreted very carefully due to potential interfering interactions of EDTA with lipids and other biomolecules involved in the experiment, e.g., cationic peptides, that may alter membrane-binding affinities of studied compounds.
- MeSH
- EDTA MeSH
- fosfatidylcholiny * chemie MeSH
- ionty MeSH
- membrány umělé * MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- EDTA MeSH
- fosfatidylcholiny * MeSH
- ionty MeSH
- membrány umělé * MeSH
In this work, the influence of membrane curvature on the Ca2+ binding to phospholipid bilayers is investigated by means of molecular dynamics simulations. In particular, we compared Ca2+ binding to flat, elastically buckled, or uniformly bent zwitterionic and anionic phospholipid bilayers. We demonstrate that Ca2+ ions bind preferably to the concave membrane surfaces in both types of bilayers. We also show that the membrane curvature leads to pronounced changes in Ca2+ binding including differences in free ion concentrations, lipid coordination distributions, and the patterns of ion binding to different chemical groups of lipids. Moreover, these effects differ substantially for the concave and convex membrane monolayers. Comparison between force fields with either full or scaled charges indicates that charge scaling results in reduction of the Ca2+ binding to curved phosphatidylserine bilayers, while for phosphatidylcholine membranes, calcium binds only weakly for both force fields.
- MeSH
- fosfatidylcholiny chemie MeSH
- fosfolipidy * chemie MeSH
- ionty MeSH
- lipidové dvojvrstvy * chemie MeSH
- simulace molekulární dynamiky MeSH
- vápník chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylcholiny MeSH
- fosfolipidy * MeSH
- ionty MeSH
- lipidové dvojvrstvy * MeSH
- vápník MeSH
Biomembranes, important building blocks of living organisms, are often exposed to large local fluctuations of pH and ionic strength. To capture changes in the membrane organization under such harsh conditions, we investigated the mobility and hydration of zwitterionic and anionic lipid bilayers upon elevated H3O+ and Ca2+ content by the time-dependent fluorescence shift (TDFS) technique. While the zwitterionic bilayers remain inert to lower pH and increased calcium concentrations, anionic membranes are responsive. Specifically, both bilayers enriched in phosphatidylserine (PS) and phosphatidylglycerol (PG) become dehydrated and rigidified at pH 4.0 compared to at pH 7.0. However, their reaction to the gradual Ca2+ increase in the acidic environment differs. While the PG bilayers exhibit strong rehydration and mild loosening of the carbonyl region, restoring membrane properties to those observed at pH 7.0, the PS bilayers remain dehydrated with minor bilayer stiffening. Molecular dynamics (MD) simulations support the strong binding of H3O+ to both PS and PG. Compared to PS, PG exhibits a weaker binding of Ca2+ also at a low pH.
- Klíčová slova
- Laurdan, anionic lipids, calcium, headgroup mobility, headgroup organization, lipid hydration, molecular dynamics, phospholipid bilayer, proton, time dependent fluorescence shift,
- MeSH
- fosfatidylseriny MeSH
- ionty MeSH
- lipidové dvojvrstvy * chemie MeSH
- protony * MeSH
- simulace molekulární dynamiky MeSH
- vápník chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylseriny MeSH
- ionty MeSH
- lipidové dvojvrstvy * MeSH
- protony * MeSH
- vápník MeSH
The organization of biomolecules and bioassemblies is highly governed by the nature and extent of their interactions with water. These interactions are of high intricacy and a broad range of methods based on various principles have been introduced to characterize them. As these methods view the hydration phenomena differently (e.g., in terms of time and length scales), a detailed insight in each particular technique is to promote the overall understanding of the stunning "hydration world." In this prospective mini-review we therefore critically examine time-dependent fluorescence shift (TDFS)-an experimental method with a high potential for studying the hydration in the biological systems. We demonstrate that TDFS is very useful especially for phospholipid bilayers for mapping the interfacial region formed by the hydrated lipid headgroups. TDFS, when properly applied, reports on the degree of hydration and mobility of the hydrated phospholipid segments in the close vicinity of the fluorophore embedded in the bilayer. Here, the interpretation of the recorded TDFS parameters are thoroughly discussed, also in the context of the findings obtained by other experimental techniques addressing the hydration phenomena (e.g., molecular dynamics simulations, NMR spectroscopy, scattering techniques, etc.). The differences in the interpretations of TDFS outputs between phospholipid biomembranes and proteins are also addressed. Additionally, prerequisites for the successful TDFS application are presented (i.e., the proper choice of fluorescence dye for TDFS studies, and TDFS instrumentation). Finally, the effects of ions and oxidized phospholipids on the bilayer organization and headgroup packing viewed from TDFS perspective are presented as application examples.
- Klíčová slova
- biomembranes, calcium, cholesterol, hydration, lipid headgroups, membrane dynamics, oxidized phosholipids, time-dependent fluorescence shift,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca2+) as shown by comparison of transport assays in Ca2+-rich and Ca2+-free buffers and upon treatment with inhibitors of plasma membrane Ca2+-permeable channels Al3+ and ruthenium red, both abolishing the effect of AgNO3. Confocal microscopy of Ca2+-sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca2+-permeable channels at the plasma membrane.
- Klíčová slova
- Auxin, Calcium, Ethylene, Silver ions, Tobacco BY-2 cells, Transmembrane transport,
- MeSH
- buněčná membrána účinky léků metabolismus MeSH
- buněčné linie MeSH
- cytosol účinky léků metabolismus MeSH
- intracelulární prostor metabolismus MeSH
- ionty MeSH
- kyseliny indoloctové metabolismus MeSH
- permeabilita buněčné membrány účinky léků MeSH
- rostlinné buňky účinky léků metabolismus MeSH
- stříbro farmakologie MeSH
- tabák cytologie metabolismus MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ionty MeSH
- kyseliny indoloctové MeSH
- stříbro MeSH
- vápník MeSH
Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.
- MeSH
- antivirové látky * chemie farmakologie MeSH
- biomimetické materiály * chemie farmakologie MeSH
- heparansulfát proteoglykany chemie farmakologie MeSH
- herpes simplex farmakoterapie metabolismus patologie MeSH
- infekce respiračními syncytiálními viry farmakoterapie metabolismus patologie MeSH
- lidé MeSH
- lidský herpesvirus 2 metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nanočástice * chemie terapeutické užití MeSH
- respirační syncytiální viry metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- antivirové látky * MeSH
- heparansulfát proteoglykany MeSH
The orchestrated recognition of phosphoinositides and concomitant intracellular release of Ca2+ is pivotal to almost every aspect of cellular processes, including membrane homeostasis, cell division and growth, vesicle trafficking, as well as secretion. Although Ca2+ is known to directly impact phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca2+ with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI(4,5)P2 containing liposomes reveal that Ca2+ as well as Mg2+ reduce the zeta potential of liposomes to nearly background levels of pure phosphatidylcholine membranes. Strikingly, lipid recognition by the default PI(4,5)P2 lipid sensor, phospholipase C delta 1 pleckstrin homology domain (PLC δ1-PH), is completely inhibited in the presence of Ca2+, while Mg2+ has no effect with 100 nm liposomes and modest effect with giant unilamellar vesicles. Consistent with biochemical data, vibrational sum frequency spectroscopy and atomistic molecular dynamics simulations reveal how Ca2+ binding to the PI(4,5)P2 headgroup and carbonyl regions leads to confined lipid headgroup tilting and conformational rearrangements. We rationalize these findings by the ability of calcium to block a highly specific interaction between PLC δ1-PH and PI(4,5)P2, encoded within the conformational properties of the lipid itself. Our studies demonstrate the possibility that switchable phosphoinositide conformational states can serve as lipid recognition and controlled cell signaling mechanisms.
- MeSH
- fosfatidylinositol-4,5-difosfát chemie metabolismus MeSH
- molekulární konformace MeSH
- simulace molekulární dynamiky * MeSH
- vápník chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát MeSH
- vápník MeSH