Most cited article - PubMed ID 28559852
Is Abdominal Fetal Electrocardiography an Alternative to Doppler Ultrasound for FHR Variability Evaluation?
This paper introduces a novel algorithm for effective and accurate extraction of non-invasive fetal electrocardiogram (NI-fECG). In NI-fECG based monitoring, the useful signal is measured along with other signals generated by the pregnant women's body, especially maternal electrocardiogram (mECG). These signals are more distinct in magnitude and overlap in time and frequency domains, making the fECG extraction extremely challenging. The proposed extraction method combines the Grey wolf algorithm (GWO) with sequential analysis (SA). This innovative combination, forming the GWO-SA method, optimises the parameters required to create a template that matches the mECG, which leads to an accurate elimination of the said signal from the input composite signal. The extraction system was tested on two databases consisting of real signals, namely, Labour and Pregnancy. The databases used to test the algorithms are available on a server at the generalist repositories (figshare) integrated with Matonia et al. (Sci Data 7(1):1-14, 2020). The results show that the proposed method extracts the fetal ECG signal with an outstanding efficacy. The efficacy of the results was evaluated based on accurate detection of the fQRS complexes. The parameters used to evaluate are as follows: accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and F1 score. Due to the stochastic nature of the GWO algorithm, ten individual runs were performed for each record in the two databases to assure stability as well as repeatability. Using these parameters, for the Labour dataset, we achieved an average ACC of 94.60%, F1 of 96.82%, SE of 97.49%, and PPV of 98.96%. For the Pregnancy database, we achieved an average ACC of 95.66%, F1 of 97.44%, SE of 98.07%, and PPV of 97.44%. The obtained results show that the fHR related parameters were determined accurately for most of the records, outperforming the other state-of-the-art approaches. The poorer quality of certain signals have caused deviation from the estimated fHR for certain records in the databases. The proposed algorithm is compared with certain well established algorithms, and has proven to be accurate in its fECG extractions.
- MeSH
- Algorithms MeSH
- Databases, Factual MeSH
- Electrocardiography methods MeSH
- Humans MeSH
- Fetal Monitoring * methods MeSH
- Signal Processing, Computer-Assisted * MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters of different hybrid systems used for non-invasive fetal electrocardiogram (fECG) extraction. The tested hybrid systems consist of two different blocks, first for maternal component estimation and second, so-called adaptive block, for maternal component suppression by means of an adaptive algorithm (AA). Herein, we tested and optimized four different AAs: Adaptive Linear Neuron (ADALINE), Standard Least Mean Squares (LMS), Sign-Error LMS, Standard Recursive Least Squares (RLS), and Fast Transversal Filter (FTF). The main criterion for optimal parameter selection was the F1 parameter. We conducted experiments using real signals from publicly available databases and those acquired by our own measurements. Our optimization method enabled us to find the corresponding optimal settings for individual adaptive block of all tested hybrid systems which improves achieved results. These improvements in turn could lead to a more accurate fetal heart rate monitoring and detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to find optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing and analysis, opening new diagnostic possibilities of non-invasive fetal electrocardiography.
- MeSH
- Algorithms MeSH
- Electrocardiography * methods MeSH
- Humans MeSH
- Least-Squares Analysis MeSH
- Fetal Monitoring methods MeSH
- Fetus physiology MeSH
- Signal Processing, Computer-Assisted * MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this paper, a new approach for the periodical testing and the functionality evaluation of a fetal heart rate monitor device based on ultrasound principle is proposed. The design and realization of the device are presented, together with the description of its features and functioning tests. In the designed device, a relay element, driven by an electric signal that allows switching at two specific frequencies, is used to simulate the fetus and the mother's heartbeat. The simulator was designed to be compliant with the standard requirements for accurate assessment and measurement of medical devices. The accuracy of the simulated signals was evaluated, and it resulted to be stable and reliable. The generated frequencies show an error of about 0.5% with respect to the nominal one while the accuracy of the test equipment was within ±3% of the test signal set frequency. This value complies with the technical standard for the accuracy of fetal heart rate monitor devices. Moreover, the performed tests and measurements show the correct functionality of the developed simulator. The proposed equipment and testing respect the technical requirements for medical devices. The features of the proposed device make it simple and quick in testing a fetal heart rate monitor, thus providing an efficient way to evaluate and test the correlation capabilities of commercial apparatuses.
- Keywords
- cardiotocograph, doppler effect, fetal heart rate, fetal heart rate monitor device, heart movement simulator, tests of medical device,
- MeSH
- Humans MeSH
- Monitoring, Physiologic MeSH
- Fetus * MeSH
- Heart Rate, Fetal * MeSH
- Heart Rate MeSH
- Pregnancy MeSH
- Ultrasonography MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The most commonly used method of fetal monitoring is based on heart activity analysis. Computer-aided fetal monitoring system enables extraction of clinically important information hidden for visual interpretation-the instantaneous fetal heart rate (FHR) variability. Today's fetal monitors are based on monitoring of mechanical activity of the fetal heart by means of Doppler ultrasound technique. The FHR is determined using autocorrelation methods, and thus it has a form of evenly spaced-every 250 ms-instantaneous measurements, where some of which are incorrect or duplicate. The parameters describing a beat-to-beat FHR variability calculated from such a signal show significant errors. The aim of our research was to develop new analysis methods that will both improve an accuracy of the FHR determination and provide FHR representation as time series of events. The study was carried out on simultaneously recorded (during labor) Doppler ultrasound signal and the reference direct fetal electrocardiogram Two subranges of Doppler bandwidths were separated to describe heart wall movements and valve motions. After reduction of signal complexity by determining the Doppler ultrasound envelope, the signal was analyzed to determine the FHR. The autocorrelation method supported by a trapezoidal prediction function was used. In the final stage, two different methods were developed to provide signal representation as time series of events: the first using correction of duplicate measurements and the second based on segmentation of instantaneous periodicity measurements. Thus, it ensured the mean heart interval measurement error of only 1.35 ms. In a case of beat-to-beat variability assessment the errors ranged from -1.9% to -10.1%. Comparing the obtained values to other published results clearly confirms that the new methods provides a higher accuracy of an interval measurement and a better reliability of the FHR variability estimation.
- Keywords
- Doppler ultrasound signal, beat-to-beat variability, fetal heart rate, fetal monitoring,
- MeSH
- Data Analysis MeSH
- Electrocardiography MeSH
- Humans MeSH
- Fetal Monitoring * MeSH
- Reproducibility of Results MeSH
- Heart Rate, Fetal * MeSH
- Heart Rate MeSH
- Pregnancy MeSH
- Ultrasonography, Doppler MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Atrial fibrillation (AF) is a serious heart arrhythmia leading to a significant increase of the risk for occurrence of ischemic stroke. Clinically, the AF episode is recognized in an electrocardiogram. However, detection of asymptomatic AF, which requires a long-term monitoring, is more efficient when based on irregularity of beat-to-beat intervals estimated by the heart rate (HR) features. Automated classification of heartbeats into AF and non-AF by means of the Lagrangian Support Vector Machine has been proposed. The classifier input vector consisted of sixteen features, including four coefficients very sensitive to beat-to-beat heart changes, taken from the fetal heart rate analysis in perinatal medicine. Effectiveness of the proposed classifier has been verified on the MIT-BIH Atrial Fibrillation Database. Designing of the LSVM classifier using very large number of feature vectors requires extreme computational efforts. Therefore, an original approach has been proposed to determine a training set of the smallest possible size that still would guarantee a high quality of AF detection. It enables to obtain satisfactory results using only 1.39% of all heartbeats as the training data. Post-processing stage based on aggregation of classified heartbeats into AF episodes has been applied to provide more reliable information on patient risk. Results obtained during the testing phase showed the sensitivity of 98.94%, positive predictive value of 98.39%, and classification accuracy of 98.86%.
- Keywords
- AF detection, HRV features, atrial fibrillation (AF), heart rate variability (HRV), support vector machine (SVM),
- MeSH
- Algorithms MeSH
- Databases, Factual MeSH
- Diagnosis, Computer-Assisted MeSH
- Electrocardiography methods MeSH
- Atrial Fibrillation diagnosis physiopathology MeSH
- Humans MeSH
- Signal Processing, Computer-Assisted MeSH
- Heart Rate physiology MeSH
- Support Vector Machine MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Fetal electrocardiography is among the most promising methods of modern electronic fetal monitoring. However, before they can be fully deployed in the clinical practice as a gold standard, the challenges associated with the signal quality must be solved. During the last two decades, a great amount of articles dealing with improving the quality of the fetal electrocardiogram signal acquired from the abdominal recordings have been introduced. This article aims to present an extensive literature survey of different non-adaptive signal processing methods applied for fetal electrocardiogram extraction and enhancement. It is limiting that a different non-adaptive method works well for each type of signal, but independent component analysis, principal component analysis and wavelet transforms are the most commonly published methods of signal processing and have good accuracy and speed of algorithms.
- Keywords
- digital signal processing, fetal electrocardiogram extraction, fetal monitoring, non-adaptive filtering,
- MeSH
- Algorithms MeSH
- Principal Component Analysis MeSH
- Electrodes MeSH
- Electrocardiography methods MeSH
- Humans MeSH
- Fetus physiology MeSH
- Signal Processing, Computer-Assisted * MeSH
- Wavelet Analysis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Non-adaptive signal processing methods have been successfully applied to extract fetal electrocardiograms (fECGs) from maternal abdominal electrocardiograms (aECGs); and initial tests to evaluate the efficacy of these methods have been carried out by using synthetic data. Nevertheless, performance evaluation of such methods using real data is a much more challenging task and has neither been fully undertaken nor reported in the literature. Therefore, in this investigation, we aimed to compare the effectiveness of two popular non-adaptive methods (the ICA and PCA) to explore the non-invasive (NI) extraction (separation) of fECGs, also known as NI-fECGs from aECGs. The performance of these well-known methods was enhanced by an adaptive algorithm, compensating amplitude difference and time shift between the estimated components. We used real signals compiled in 12 recordings (real01-real12). Five of the recordings were from the publicly available database (PhysioNet-Abdominal and Direct Fetal Electrocardiogram Database), which included data recorded by multiple abdominal electrodes. Seven more recordings were acquired by measurements performed at the Institute of Medical Technology and Equipment, Zabrze, Poland. Therefore, in total we used 60 min of data (i.e., around 88,000 R waves) for our experiments. This dataset covers different gestational ages, fetal positions, fetal positions, maternal body mass indices (BMI), etc. Such a unique heterogeneous dataset of sufficient length combining continuous Fetal Scalp Electrode (FSE) acquired and abdominal ECG recordings allows for robust testing of the applied ICA and PCA methods. The performance of these signal separation methods was then comprehensively evaluated by comparing the fetal Heart Rate (fHR) values determined from the extracted fECGs with those calculated from the fECG signals recorded directly by means of a reference FSE. Additionally, we tested the possibility of non-invasive ST analysis (NI-STAN) by determining the T/QRS ratio. Our results demonstrated that even though these advanced signal processing methods are suitable for the non-invasive estimation and monitoring of the fHR information from maternal aECG signals, their utility for further morphological analysis of the extracted fECG signals remains questionable and warrants further work.
- Keywords
- electronic fetal monitoring (EFM), fetal electrocardiogram (fECG), independent component analysis (ICA), non-invasive ST analysis (NI-STAN), non-invasive fetal ECG (NI-fECG), non-invasive fetal heart rate (NI-fHR) estimation, nonadaptive methods, principal component analysis (PCA),
- Publication type
- Journal Article MeSH
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order N) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.
- Keywords
- Least Mean Squares (LMS) algorithm, Recursive Least Squares (RLS) algorithm, adaptive filtering, fetal ECG,
- MeSH
- Algorithms MeSH
- Electrodes MeSH
- Electrocardiography MeSH
- Humans MeSH
- Fetal Monitoring * MeSH
- Signal Processing, Computer-Assisted MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH