Nejvíce citovaný článek - PubMed ID 29068411
Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites
The preparation of pure metabolites of bioactive compounds, particularly (poly)phenols, is essential for the accurate determination of their pharmacological profiles in vivo. Since the extraction of these metabolites from biological material is tedious and impractical, they can be synthesized enzymatically in vitro by bacterial PAPS-independent aryl sulfotransferases (ASTs). However, only a few ASTs have been studied and used for (poly)phenol sulfation. This study introduces new fully characterized recombinant ASTs selected according to their similarity to the previously characterized ASTs. These enzymes, produced in Escherichia coli, were purified, biochemically characterized, and screened for the sulfation of nine flavonoids and two phenolic acids using p-nitrophenyl sulfate. All tested compounds were proved to be substrates for the new ASTs, with kaempferol and luteolin being the best converted acceptors. ASTs from Desulfofalx alkaliphile (DalAST) and Campylobacter fetus (CfAST) showed the highest efficiency in the sulfation of tested polyphenols. To demonstrate the efficiency of the present sulfation approach, a series of new authentic metabolite standards, regioisomers of kaempferol sulfate, were enzymatically produced, isolated, and structurally characterized.
- Klíčová slova
- aryl sulfotransferase, enzymatic sulfation, kaempferol sulfate, metabolite, polyphenol,
- MeSH
- arylsulfotransferasa * metabolismus chemie genetika MeSH
- bakteriální proteiny metabolismus chemie genetika MeSH
- biokatalýza MeSH
- Escherichia coli metabolismus genetika enzymologie MeSH
- polyfenoly * metabolismus chemie MeSH
- sírany metabolismus chemie MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arylsulfotransferasa * MeSH
- bakteriální proteiny MeSH
- polyfenoly * MeSH
- sírany MeSH
Phenolic acids are known flavonoid metabolites, which typically undergo bioconjugation during phase II of biotransformation, forming sulfates, along with other conjugates. Sulfated derivatives of phenolic acids can be synthesized by two approaches: chemoenzymatically by 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent sulfotransferases or PAPS-independent aryl sulfotransferases such as those from Desulfitobacterium hafniense, or chemically using SO3 complexes. Both approaches were tested with six selected phenolic acids (2-hydroxyphenylacetic acid (2-HPA), 3-hydroxyphenylacetic acid (3-HPA), 4-hydroxyphenylacetic acid (4-HPA), 3,4-dihydroxyphenylacetic acid (DHPA), 3-(4-hydroxyphenyl)propionic acid (4-HPP), and 3,4-dihydroxyphenylpropionic acid (DHPP)) to create a library of sulfated metabolites of phenolic acids. The sulfates of 3-HPA, 4-HPA, 4-HPP, DHPA, and DHPP were all obtained by the methods of chemical synthesis. In contrast, the enzymatic sulfation of monohydroxyphenolic acids failed probably due to enzyme inhibition, whereas the same reaction was successful for dihydroxyphenolic acids (DHPA and DHPP). Special attention was also paid to the counterions of the sulfates, a topic often poorly reported in synthetic works. The products obtained will serve as authentic analytical standards in metabolic studies and to determine their biological activity.
- Klíčová slova
- aryl sulfotransferase, biotransformation, flavonoid metabolites, phenolic acids, sulfation,
- MeSH
- fosfoadenosinfosfosulfát * chemie metabolismus MeSH
- hydroxybenzoáty MeSH
- sírany metabolismus MeSH
- sulfotransferasy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfoadenosinfosfosulfát * MeSH
- hydroxybenzoáty MeSH
- phenolic acid MeSH Prohlížeč
- sírany MeSH
- sulfotransferasy * MeSH
A library of previously unknown halogenated derivatives of flavonolignans (silybins A and B, 2,3-dehydrosilybin, silychristin A, and 2,3-dehydrosilychristin A) was prepared. The effect of halogenation on the biological activity of flavonolignans was investigated. Halogenated derivatives had a significant effect on bacteria. All prepared derivatives inhibited the AI-2 type of bacterial communication (quorum sensing) at concentrations below 10 µM. All prepared compounds also inhibited the adhesion of bacteria (Staphyloccocus aureus and Pseudomonas aeruginosa) to the surface, preventing biofilm formation. These two effects indicate that the halogenated derivatives are promising antibacterial agents. Moreover, these derivatives acted synergistically with antibiotics and reduced the viability of antibiotic-resistant S. aureus. Some flavonolignans were able to reverse the resistant phenotype to a sensitive one, implying that they modulate antibiotic resistance.
- Klíčová slova
- bacteria, biological activity, flavonoids, flavonolignans, halogenation, multidrug resistance,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria MeSH
- biofilmy MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- Pseudomonas aeruginosa MeSH
- quorum sensing MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
Sulfation is an important reaction in nature, and sulfated phenolic compounds are of interest as standards of mammalian phase II metabolites or pro-drugs. Such standards can be prepared using chemoenzymatic methods with aryl sulfotransferases. The aim of the present work was to obtain a large library of sulfated phenols, phenolic acids, flavonoids, and flavonolignans and optimize their HPLC (high performance liquid chromatography) analysis. Four new sulfates of 2,3,4-trihydroxybenzoic acid, catechol, 4-methylcatechol, and phloroglucinol were prepared and fully characterized using MS (mass spectrometry), 1H, and 13C NMR. The separation was investigated using HPLC with PDA (photodiode-array) detection and a total of 38 standards of phenolics and their sulfates. Different stationary (monolithic C18, C18 Polar, pentafluorophenyl, ZICpHILIC) and mobile phases with or without ammonium acetate buffer were compared. The separation results were strongly dependent on the pH and buffer capacity of the mobile phase. The developed robust HPLC method is suitable for the separation of enzymatic sulfation reaction mixtures of flavonoids, flavonolignans, 2,3-dehydroflavonolignans, phenolic acids, and phenols with PDA detection. Moreover, the method is directly applicable in conjunction with mass detection due to the low flow rate and the absence of phosphate buffer and/or ion-pairing reagents in the mobile phase.
- Klíčová slova
- Desulfitobacterium hafniense, HPLC analysis, aryl sulfotransferase, flavonoids, phenolic acid, polyphenols, sulfates,
- MeSH
- fenoly analýza MeSH
- flavonoidy analýza MeSH
- flavonolignany * MeSH
- sírany * MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenoly MeSH
- flavonoidy MeSH
- flavonolignany * MeSH
- sírany * MeSH
Bioactive compounds present in plant-based foods, and their metabolites derived from gut microbiota and endogenous metabolism, represent thousands of chemical structures of potential interest for human nutrition and health. State-of-the-art analytical methodologies, including untargeted metabolomics based on high-resolution mass spectrometry, are required for the profiling of these compounds in complex matrices, including plant food materials and biofluids. The aim of this project was to compare the analytical coverage of untargeted metabolomics methods independently developed and employed in various European platforms. In total, 56 chemical standards representing the most common classes of bioactive compounds spread over a wide chemical space were selected and analyzed by the participating platforms (n = 13) using their preferred untargeted method. The results were used to define analytical criteria for a successful analysis of plant food bioactives. Furthermore, they will serve as a basis for an optimized consensus method.
- Klíčová slova
- mass spectrometry, method development, phytochemicals,
- Publikační typ
- časopisecké články MeSH
Silymarin, an extract from milk thistle (Silybum marianum) fruits, is consumed in various food supplements. The metabolism of silymarin flavonolignans in mammals is complex, the exact structure of their metabolites still remains partly unclear and standards are not commercially available. This work is focused on the preparation of sulfated metabolites of silymarin flavonolignans. Sulfated flavonolignans were prepared using aryl sulfotransferase from Desulfitobacterium hafniense and p-nitrophenyl sulfate as a sulfate donor and characterized by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). Their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging; ferric (FRAP) and Folin⁻Ciocalteu reagent (FCR) reducing activity; anti-lipoperoxidant potential; and effect on the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway were examined. Pure silybin A 20-O-sulfate, silybin B 20-O-sulfate, 2,3-dehydrosilybin-20-O-sulfate, 2,3-dehydrosilybin-7,20-di-O-sulfate, silychristin-19-O-sulfate, 2,3-dehydrosilychristin-19-O-sulfate, and silydianin-19-O-sulfate were prepared and fully characterized. Sulfated 2,3-dehydroderivatives were more active in FCR and FRAP assays than the parent compounds, and remaining sulfates were less active chemoprotectants. The sulfated flavonolignans obtained can be now used as authentic standards for in vivo metabolic experiments and for further research on their biological activity.
- Klíčová slova
- Silybum marianum, activity, biotransformation, metabolites, sulfate, sulfotransferase,
- MeSH
- antioxidancia chemie MeSH
- flavonolignany chemie MeSH
- hmotnostní spektrometrie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární struktura MeSH
- ostropestřec mariánský chemie MeSH
- ovoce chemie MeSH
- potravní doplňky MeSH
- rostliny chemie ultrastruktura MeSH
- scavengery volných radikálů chemie MeSH
- sírany chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- flavonolignany MeSH
- scavengery volných radikálů MeSH
- sírany MeSH