Most cited article - PubMed ID 29567451
Pm21 from Haynaldia villosa Encodes a CC-NBS-LRR Protein Conferring Powdery Mildew Resistance in Wheat
Powdery mildew poses a significant threat to wheat crops worldwide, emphasizing the need for durable disease control strategies. The wheat-Dasypyrum villosum T5AL·5 V#4 S and T5DL·5 V#4 S translocation lines carrying powdery mildew resistant gene Pm55 shows developmental-stage and tissue-specific resistance, whereas T5DL·5 V#5 S line carrying Pm5V confers resistance at all stages. Here, we clone Pm55 and Pm5V, and reveal that they are allelic and renamed as Pm55a and Pm55b, respectively. The two Pm55 alleles encode coiled-coil, nucleotide-binding site-leucine-rich repeat (CNL) proteins, conferring broad-spectrum resistance to powdery mildew. However, they interact differently with a linked inhibitor gene, SuPm55 to cause different resistance to wheat powdery mildew. Notably, Pm55 and SuPm55 encode unrelated CNL proteins, and the inactivation of SuPm55 significantly reduces plant fitness. Combining SuPm55/Pm55a and Pm55b in wheat does not result in allele suppression or yield penalty. Our results provide not only insights into the suppression of resistance in wheat, but also a strategy for breeding durable resistance.
Gene cloning in repeat-rich polyploid genomes remains challenging. Here, we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene (R-gene) Pm69 derived from tetraploid wild emmer wheat. A conventional positional cloning approach was not effective owing to suppressed recombination. Chromosome sorting was compromised by insufficient purity. A Pm69 physical map, constructed by assembling Oxford Nanopore Technology (ONT) long-read genome sequences, revealed a rapidly evolving nucleotide-binding leucine-rich repeat (NLR) R-gene cluster with structural variations. A single candidate NLR was identified by anchoring RNA sequencing reads from susceptible mutants to ONT contigs and was validated by virus-induced gene silencing. Pm69 is likely a newly evolved NLR and was discovered in only one location across the wild emmer wheat distribution range in Israel. Pm69 was successfully introgressed into cultivated wheat, and a diagnostic molecular marker was used to accelerate its deployment and pyramiding with other R-genes.
- MeSH
- Cloning, Molecular MeSH
- Chromosome Mapping MeSH
- Multigene Family MeSH
- Triticum * genetics MeSH
- Genes, Plant * genetics MeSH
- Publication type
- Journal Article MeSH
Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.
- Keywords
- Aegilops biuncialis, Aegilops geniculata, chromosome flow sorting, flow karyotyping, genome dissecting,
- Publication type
- Journal Article MeSH
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
- Keywords
- CRISPR/Cas9, QTL cloning, Wheat, abiotic-stress tolerance, disease resistance, genome-wide association, genomic selection, quantitative trait locus mapping,
- Publication type
- Journal Article MeSH
- Review MeSH
The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.
Genomics studies in wild species of wheat have been limited due to the lack of references; however, new technologies and bioinformatics tools have much potential to promote genomic research. The wheat-Haynaldia villosa translocation line T6VS·6AL has been widely used as a backbone parent of wheat breeding in China. Therefore, revealing the genome structure of translocation chromosome 6VS·6AL will clarify how this chromosome formed and will help to determine how it affects agronomic traits. In this study, chromosome flow sorting, NGS sequencing and Chicago long-range linkage assembly were innovatively used to produce the assembled sequences of 6VS·6AL, and gene prediction and genome structure characterization at the molecular level were effectively performed. The analysis discovered that the short arm of 6VS·6AL was actually composed of a large distal segment of 6VS, a small proximal segment of 6AS and the centromere of 6A, while the collinear region in 6VS corresponding to 230-260 Mb of 6AS-Ta was deleted when the recombination between 6VS and 6AS occurred. In addition to the molecular mechanism of the increased grain weight and enhanced spike length produced by the translocation chromosome, it may be correlated with missing GW2-V and an evolved NRT-V cluster. Moreover, a fine physical bin map of 6VS was constructed by the high-throughput developed 6VS-specific InDel markers and a series of newly identified small fragment translocation lines involving 6VS. This study will provide essential information for mining of new alien genes carried by the 6VS·6AL translocation chromosome.
- Keywords
- Chicago long-range linkage assembly, InDel markers, genome annotation, physical bin map, wheat-Haynaldia villosa translocation line T6VS·6AL,
- MeSH
- Chromosomes, Plant genetics MeSH
- Poaceae genetics MeSH
- Triticum * genetics MeSH
- Plant Breeding * MeSH
- Translocation, Genetic MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Flow cytometric analysis and sorting of plant mitotic chromosomes has been mastered by only a few laboratories worldwide. Yet, it has been contributing significantly to progress in plant genetics, including the production of genome assemblies and the cloning of important genes. The dissection of complex genomes by flow sorting into the individual chromosomes that represent small parts of the genome reduces DNA sample complexity and streamlines projects relying on molecular and genomic techniques. Whereas flow cytometric analysis, that is, chromosome classification according to fluorescence and light scatter properties, is an integral part of any chromosome sorting project, it has rarely been used on its own due to lower resolution and sensitivity as compared to other cytogenetic methods. To perform chromosome analysis and sorting, commercially available electrostatic droplet sorters are suitable. However, in order to resolve and purify chromosomes of interest the instrument must offer high resolution of optical signals as well as stability during long runs. The challenge is thus not the instrumentation, but the adequate sample preparation. The sample must be a suspension of intact mitotic metaphase chromosomes and the protocol, which includes the induction of cell cycle synchrony, accumulation of dividing cells at metaphase, and release of undamaged chromosomes, is time consuming and laborious and needs to be performed very carefully. Moreover, in addition to fluorescent staining chromosomal DNA, the protocol may include specific labelling of DNA repeats to facilitate discrimination of particular chromosomes. This review introduces the applications of chromosome sorting in plants, and discusses in detail sample preparation, chromosome analysis and sorting to achieve the highest purity in flow-sorted fractions, and their suitability for downstream applications.
- Keywords
- DNA amplification, DNA isolation, cell cycle synchronization, gene mapping and cloning, genome sequencing, liquid chromosome suspension, marker development, mitotic metaphase chromosomes, repetitive DNA labelling,
- MeSH
- Cell Cycle MeSH
- Chromosomes, Plant * genetics MeSH
- Metaphase MeSH
- Flow Cytometry MeSH
- Plants * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.
- Keywords
- Bgt, Triticum aestivum, AvrPm effectors, Blumeria graminis f. sp. tritici, EMS mutagenesis, NLR, chromosome sequencing,
- MeSH
- Ascomycota * genetics MeSH
- Chromosomes MeSH
- Plant Diseases genetics MeSH
- Disease Resistance genetics MeSH
- Triticum * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Crop breeding for resistance to pathogens largely relies on genes encoding receptors that confer race-specific immunity. Here, we report the identification of the wheat Pm4 race-specific resistance gene to powdery mildew. Pm4 encodes a putative chimeric protein of a serine/threonine kinase and multiple C2 domains and transmembrane regions, a unique domain architecture among known resistance proteins. Pm4 undergoes constitutive alternative splicing, generating two isoforms with different protein domain topologies that are both essential for resistance function. Both isoforms interact and localize to the endoplasmatic reticulum when co-expressed. Pm4 reveals additional diversity of immune receptor architecture to be explored for breeding and suggests an endoplasmatic reticulum-based molecular mechanism of Pm4-mediated race-specific resistance.
- MeSH
- Alternative Splicing * MeSH
- Ascomycota immunology MeSH
- Cloning, Molecular MeSH
- Evolution, Molecular MeSH
- Plant Diseases genetics MeSH
- Disease Resistance genetics MeSH
- Protein Kinases genetics physiology MeSH
- Triticum enzymology genetics microbiology MeSH
- Recombination, Genetic MeSH
- Genes, Plant MeSH
- Plant Proteins genetics physiology MeSH
- Gene Silencing MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Protein Kinases MeSH
- Plant Proteins MeSH
Unraveling and exploiting mechanisms of disease resistance in cereal crops is currently limited by their large repeat-rich genomes and the lack of genetic recombination or cultivar (cv)-specific sequence information. We cloned the first leaf rust resistance gene Rph1 (Rph1 a) from cultivated barley (Hordeum vulgare) using "MutChromSeq," a recently developed molecular genomics tool for the rapid cloning of genes in plants. Marker-trait association in the CI 9214/Stirling doubled haploid population mapped Rph1 to the short arm of chromosome 2H in a physical region of 1.3 megabases relative to the barley cv Morex reference assembly. A sodium azide mutant population in cv Sudan was generated and 10 mutants were confirmed by progeny-testing. Flow-sorted 2H chromosomes from Sudan (wild type) and six of the mutants were sequenced and compared to identify candidate genes for the Rph1 locus. MutChromSeq identified a single gene candidate encoding a coiled-coil nucleotide binding site Leucine-rich repeat (NLR) receptor protein that was altered in three different mutants. Further Sanger sequencing confirmed all three mutations and identified an additional two independent mutations within the same candidate gene. Phylogenetic analysis determined that Rph1 clustered separately from all previously cloned NLRs from the Triticeae and displayed highest sequence similarity (89%) with a homolog of the Arabidopsis (Arabidopsis thaliana) disease resistance protein 1 protein in Triticum urartu In this study we determined the molecular basis for Rph1-mediated resistance in cultivated barley enabling varietal improvement through diagnostic marker design, gene editing, and gene stacking technologies.
- MeSH
- Host-Pathogen Interactions * MeSH
- Hordeum physiology MeSH
- Chromosome Mapping MeSH
- NLR Proteins physiology MeSH
- Genes, Plant MeSH
- Plant Proteins physiology MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- NLR Proteins MeSH
- Plant Proteins MeSH