Nejvíce citovaný článek - PubMed ID 29748175
Long-term exposure to very low doses of bisphenol S affects female reproduction
Bisphenol S (BPS), the main replacement for bisphenol A (BPA), is thought to be toxic, but limited information is available on the effects of Bisphenol S on ovarian follicles. In our study, we demonstrated the presence of Bisphenol S in the follicular fluid of women at a concentration of 22.4 nM. The effect of such concentrations of Bisphenol S on oocyte maturation and subsequent embryo development is still unknown. Therefore, we focused on the effect of Bisphenol S on in vitro oocyte maturation, fertilization, and embryo development. As a model, we used porcine oocytes, which show many physiological similarities to human oocytes. Oocytes were exposed to Bisphenol S concentrations similar to those detected in female patients in the ART clinic. We found a decreased ability of oocytes to successfully complete meiotic maturation. Mature oocytes showed an increased frequency of meiotic spindle abnormalities and chromosome misalignment. Alarming associations of oocyte Bisphenol S exposure with the occurrence of aneuploidy and changes in the distribution of mitochondria and mitochondrial proteins were demonstrated for the first time. However, the number and quality of blastocysts derived from oocytes that successfully completed meiotic maturation under the influence of Bisphenol S was not affected.
- Klíčová slova
- aneuploidy, bisphenol S (BPS), embryonic development, endocrine disruption, follicular fluid (FF), meiosis, oocyte,
- Publikační typ
- časopisecké články MeSH
Persulfidation contributes to a group of redox post-translational modifications (PTMs), which arise exclusively on the sulfhydryl group of cysteine as a result of hydrogen sulfide (H2S) action. Redox-active molecules, including H2S, contribute to sperm development; therefore, redox PTMs represent an extremely important signalling pathway in sperm life. In this path, persulfidation prevents protein damage caused by irreversible cysteine hyperoxidation and thus maintains this signalling pathway. In our study, we detected both H2S and its production by all H2S-releasing enzymes (cystathionine γ-lyase (CTH), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (MPST)) in male reproduction, including spermatozoa. We provided evidence that sperm H2S leads to persulfidation of proteins, such as glyceraldehyde-3-phosphate dehydrogenase, tubulin, and anchor protein A-kinase. Overall, this study suggests that persulfidation, as a part of the redox signalling pathway, is tightly regulated by enzymatic H2S production and is required for sperm viability.
- MeSH
- cystathionin-gama-lyasa metabolismus MeSH
- cystein metabolismus MeSH
- lidé MeSH
- rozmnožování MeSH
- sperma metabolismus MeSH
- sulfan * metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- cystathionin-gama-lyasa MeSH
- cystein MeSH
- sulfan * MeSH
Idiopathic infertility is a serious problem, which can be caused and explained by exposure to endocrine disruptors, such as bisphenols. In our study, we studied transactional exposure to bisphenol and its effects on newborn male mice throughout their reproductive life. Newborn male mice were exposed to bisphenol S and bisphenol F through maternal milk from post-natal day 0 to post-natal day 15 at concentrations of 0.1 ng.g/bw/day and 10 ng.g/bw/day, respectively. Although there were minimal differences between the control and experimental groups in testicular tissue quality and spermatozoa quality, we discovered an interesting influence on early embryonic development. Moderate doses of bisphenol negatively affected cleavage of the early embryo and subsequently, the blastocyst rate, as well as the number of blastomeres per blastocyst. In our study, we focused on correlations between particular stages from spermatogenesis to blastocyst development. We followed epigenetic changes such as dimethylation of histone H3 and phosphorylation of histone H2 from germ cells to blastocysts; we discovered the transfer of DNA double-strand breaks through the paternal pronucleus from spermatozoa to blastomeres in the blastocyst. We elucidated the impact of sperm DNA damage on early embryonic development, and our results indicate that idiopathic infertility in adulthood may have causes related to the perinatal period.
- Klíčová slova
- DNA damage, bisphenol, idiopathic infertility, nursing exposure, spermatogenesis,
- Publikační typ
- časopisecké články MeSH
Male fertility has been deteriorating worldwide for considerable time, with the greatest deterioration recorded mainly in the United States, Europe countries, and Australia. That is, especially in countries where an abundance of chemicals called endocrine disruptors has repeatedly been reported, both in the environment and in human matrices. Human exposure to persistent and non-persistent chemicals is ubiquitous and associated with endocrine-disrupting effects. This group of endocrine disrupting chemicals (EDC) can act as agonists or antagonists of hormone receptors and can thus significantly affect a number of physiological processes. It can even negatively affect human reproduction with an impact on the development of gonads and gametogenesis, fertilization, and the subsequent development of embryos. The negative effects of endocrine disruptors on sperm gametogenesis and male fertility in general have been investigated and repeatedly demonstrated in experimental and epidemiological studies. Male reproduction is affected by endocrine disruptors via their effect on testicular development, impact on estrogen and androgen receptors, potential epigenetic effect, production of reactive oxygen species or direct effect on spermatozoa and other cells of testicular tissue. Emerging scientific evidence suggests that the increasing incidence of male infertility is associated with the exposure to persistent and non-persistent endocrine-disrupting chemicals such as bisphenols and perfluoroalkyl chemicals (PFAS). These chemicals may impact men's fertility through various mechanisms. This study provides an overview of the mechanisms of action common to persistent (PFAS) and nonpersistent (bisphenols) EDC on male fertility.
- Klíčová slova
- bisphenol, endocrine disrupting chemicals, male infertility, perfluoroalkyl substances, spermatogenesis, spermatozoa, steroidogenesis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The contribution of environmental pollutants to the obesity pandemic is still not yet fully recognized. Elucidating possible cellular and molecular mechanisms of their effects is of high importance. Our study aimed to evaluate the effect of chronic, 21-day-long, 2,2-bis (4-chlorophenyl)-1,1-dichlorethylenedichlorodiphenyldichloroethylene (p,p'-DDE) exposure of human adipose-derived mesenchymal stem cells committed to adipogenesis on mitochondrial oxygen consumption on days 4, 10, and 21. In addition, the mitochondrial membrane potential (MMP), the quality of the mitochondrial network, and lipid accumulation in maturing cells were evaluated. Compared to control differentiating adipocytes, exposure to p,p'-DDE at 1 μM concentration significantly increased basal (routine) mitochondrial respiration, ATP-linked oxygen consumption and MMP of intact cells on day 21 of adipogenesis. In contrast, higher pollutant concentration seemed to slow down the gradual increase in ATP-linked oxygen consumption typical for normal adipogenesis. Organochlorine p,p'-DDE did not alter citrate synthase activity. In conclusion, in vitro 1 μM p,p'-DDE corresponding to human exposure is able to increase the mitochondrial respiration per individual mitochondrion at the end of adipocyte maturation. Our data reveal that long-lasting exposure to p,p'-DDE could interfere with the metabolic programming of mature adipocytes.
- Klíčová slova
- adipogenesis, human adipose-derived mesenchymal stem cells, mitochondrial respiration, p,p′-DDE,
- MeSH
- adipogeneze účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- dichlordifenyldichlorethylen toxicita MeSH
- kultivované buňky MeSH
- látky znečišťující životní prostředí toxicita MeSH
- lidé MeSH
- membránový potenciál mitochondrií MeSH
- mezenchymální kmenové buňky cytologie účinky léků MeSH
- mitochondrie účinky léků MeSH
- obezita metabolismus MeSH
- tukové buňky cytologie účinky léků MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dichlordifenyldichlorethylen MeSH
- látky znečišťující životní prostředí MeSH
BACKGROUND: Bisphenol S (BPS) is increasingly used as a replacement for bisphenol A in the manufacture of products containing polycarbonates and epoxy resins. However, further studies of BPS exposure are needed for the assessment of health risks to humans. In this study we assessed the potential harmfulness of low-dose BPS on reproduction in male mice. METHODS: To simulate human exposure under experimental conditions, 8-week-old outbred ICR male mice received 8 weeks of drinking water containing a broad range of BPS doses [0.001, 1.0, or 100 μg/kg body weight (bw)/day, BPS1-3] or vehicle control. Mice were sacrificed and testicular tissue taken for histological analysis and protein identification by nano-liquid chromatography/mass spectrometry (MS) and sperm collected for immunodetection of acetylated lysine and phosphorylated tyrosine followed by protein characterisation using matrix-assisted laser desorption ionisation time-of-flight MS (MALDI-TOF MS). RESULTS: The results indicate that compared to vehicle, 100 μg/kg/day exposure (BPS3) leads to 1) significant histopathology in testicular tissue; and, 2) higher levels of the histone protein γH2AX, a reliable marker of DNA damage. There were fewer mature spermatozoa in the germ layer in the experimental group treated with 1 μg/kg bw (BPS2). Finally, western blot and MALDI-TOF MS studies showed significant alterations in the sperm acetylome and phosphorylome in mice treated with the lowest exposure (0.001 μg/kg/day; BPS1), although the dose is several times lower than what has been published so far. CONCLUSIONS: In summary, this range of qualitative and quantitative findings in young male mice raise the possibility that very low doses of BPS may impair mammalian reproduction through epigenetic modifications of sperm proteins.
- Klíčová slova
- Bisphenol S, Endocrine disruptor, Low dose effect, Male reproduction, Post-translational modification,
- MeSH
- acetylace účinky léků MeSH
- endokrinní disruptory farmakologie MeSH
- epigeneze genetická MeSH
- fenoly farmakologie MeSH
- fosforylace účinky léků MeSH
- myši MeSH
- poškození DNA účinky léků MeSH
- posttranslační úpravy proteinů účinky léků MeSH
- spermie účinky léků MeSH
- sulfony farmakologie MeSH
- testis účinky léků patologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zrání spermie účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bisphenol S MeSH Prohlížeč
- endokrinní disruptory MeSH
- fenoly MeSH
- sulfony MeSH