Most cited article - PubMed ID 30103540
The Efficacy of Amifostine against Multiple-Dose Doxorubicin-Induced Toxicity in Rats
Disruption of the alveolar−endothelial barrier caused by inflammation leads to the progression of septic acute lung injury (ALI). In the present study, we investigated the beneficial effects of simvastatin on the endotoxin lipopolysaccharide (LPS)-induced ALI and its related mechanisms. A model of ALI was induced within experimental sepsis developed by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment (10−40 mg/kg orally). The severity of the lung tissue inflammatory injury was expressed as pulmonary damage scores (PDS). Alveolar epithelial cell apoptosis was confirmed by TUNEL assay (DNA fragmentation) and expressed as an apoptotic index (AI), and immunohistochemically for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL, an inhibitor of apoptosis, survivin, and transcriptional factor, NF-kB/p65. Severe inflammatory injury of pulmonary parenchyma (PDS 3.33 ± 0.48) was developed after the LPS challenge, whereas simvastatin significantly and dose-dependently protected lung histology after LPS (p < 0.01). Simvastatin in a dose of 40 mg/kg showed the most significant effects in amelioration alveolar epithelial cells apoptosis, demonstrating this as a marked decrease of AI (p < 0.01 vs. LPS), cytochrome C, and cleaved caspase-3 expression. Furthermore, simvastatin significantly enhanced the expression of Bcl-xL and survivin. Finally, the expression of survivin and its regulator NF-kB/p65 in the alveolar epithelium was in strong positive correlation across the groups. Simvastatin could play a protective role against LPS-induced ALI and apoptosis of the alveolar−endothelial barrier. Taken together, these effects were seemingly mediated by inhibition of caspase 3 and cytochrome C, a finding that might be associated with the up-regulation of cell-survival survivin/NF-kB/p65 pathway and Bcl-xL.
- Keywords
- NF-kB/p65, alveolar epithelial cells, apoptosis, simvastatin, survivin,
- MeSH
- Acute Lung Injury * chemically induced drug therapy metabolism MeSH
- Apoptosis MeSH
- Cytochromes c metabolism MeSH
- Endotoxins adverse effects MeSH
- Caspase 3 genetics metabolism MeSH
- Humans MeSH
- Lipopolysaccharides toxicity MeSH
- NF-kappa B * metabolism MeSH
- Lung pathology MeSH
- Alveolar Epithelial Cells metabolism MeSH
- Simvastatin adverse effects MeSH
- Survivin genetics MeSH
- Up-Regulation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytochromes c MeSH
- Endotoxins MeSH
- Caspase 3 MeSH
- Lipopolysaccharides MeSH
- NF-kappa B * MeSH
- Simvastatin MeSH
- Survivin MeSH
In this paper, the potential antidote efficacy of commercially available formulations of various feed additives such as Minazel-Plus®, Mycosorb®, and Mycofix® was considered by recording their incidence on general health, body weight, and food and water intake, as well as through histopathology and semiquantitative analysis of gastric alterations in Wistar rats treated with the T-2 toxin in a single-dose regimen of 1.67 mg/kg p.o. (1 LD50) for 4 weeks. As an organic adsorbent, Mycosorb® successfully antagonized acute lethal incidence of the T-2 toxin (protective index (PI) = 2.25; p < 0.05 vs. T-2 toxin), and had adverse effects on body weight gain as well as food and water intake during the research (p < 0.001). However, the protective efficacy of the other two food additives was significantly lower (p < 0.05). Treatment with Mycosorb® significantly reduced the severity of gastric damage, which was not the case when the other two adsorbents were used. Our results suggest that Mycosorb® is a much better adsorbent for preventing the adverse impact of the T-2 toxin as well as its toxic metabolites compared with Minazel-plus® or Mycofix-plus®, and it almost completely suppresses its acute toxic effects and cytotoxic potential on the gastric epithelial, glandular, and vascular endothelial cells.
- Keywords
- T-2 toxin, adsorbents, antidote, rats,
- MeSH
- Adsorption MeSH
- Antidotes chemistry pharmacology MeSH
- Time Factors MeSH
- Endothelium, Vascular drug effects pathology MeSH
- Iodophors pharmacology MeSH
- Lethal Dose 50 MeSH
- Molecular Structure MeSH
- Poisoning drug therapy pathology MeSH
- Rats, Wistar MeSH
- Food Additives chemistry pharmacology MeSH
- T-2 Toxin poisoning MeSH
- Structure-Activity Relationship MeSH
- Gastric Mucosa drug effects pathology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Antidotes MeSH
- Iodophors MeSH
- Mycofix MeSH Browser
- Food Additives MeSH
- T-2 Toxin MeSH
Increasing evidence suggests that apoptosis of tubular cells and renal inflammation mainly determine the outcome of sepsis-associated acute kidney injury (AKI). The study aim was to investigate the molecular mechanism involved in the renoprotective effects of simvastatin in endotoxin (lipopolysaccharide, LSP)-induced AKI. A sepsis model was established by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment. The severity of the inflammatory injury was expressed as renal damage scores (RDS). Apoptosis of tubular cells was detected by Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL assay) (apoptotic DNA fragmentation, expressed as an apoptotic index, AI) and immunohistochemical staining for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL and survivin. We found that endotoxin induced severe renal inflammatory injury (RDS = 3.58 ± 0.50), whereas simvastatin dose-dependently prevented structural changes induced by LPS. Furthermore, simvastatin 40 mg/kg most profoundly attenuated tubular apoptosis, determined as a decrease of cytochrome C, caspase-3 expression, and AIs (p < 0.01 vs. LPS). Conversely, simvastatin induced a significant increase of Bcl-XL and survivin, both in the strong inverse correlations with cleaved caspase-3 and cytochrome C. Our study indicates that simvastatin has cytoprotective effects against LPS-induced tubular apoptosis, seemingly mediated by upregulation of cell-survival molecules, such as Bcl-XL and survivin, and inhibition of the mitochondrial cytochrome C and downstream caspase-3 activation.
- Keywords
- Bcl-XL, cytochrome C, endotoxin, simvastatin, survivin, tubular apoptosis,
- MeSH
- Acute Kidney Injury chemically induced drug therapy genetics pathology MeSH
- Apoptosis drug effects MeSH
- Cytochromes c genetics MeSH
- Endotoxins toxicity MeSH
- Epithelial Cells drug effects pathology MeSH
- Rats MeSH
- Kidney Tubules drug effects pathology MeSH
- Kidney drug effects injuries metabolism pathology MeSH
- Humans MeSH
- Lipopolysaccharides toxicity MeSH
- bcl-X Protein genetics MeSH
- Simvastatin pharmacology MeSH
- Cell Survival drug effects MeSH
- Inflammation chemically induced drug therapy genetics pathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytochromes c MeSH
- Endotoxins MeSH
- Lipopolysaccharides MeSH
- bcl-X Protein MeSH
- Simvastatin MeSH
Certain AChE reactivators, asoxime, obidoxime, K027, K048, and K075, when taken in overdoses and sometimes even when introduced within therapeutic ranges, may injure the different organs. As a continuation of previously published data, in this study, Wistar rats have sacrificed 24 hrs and 7 days after single im application of 0.1LD50, 0.5LD50 and 1.0LD50 of each reactivator, and examinated tissue samples were obtained for pathohistological and semiquantitative analysis. A severity of tissue alteration, expressed as different tissue damage scores were evaluated. Morphological structure of examinated tissues treated with of 0.1LD50 of all reactivators was comparable with the control group of rats. Moderate injuries were seen in visceral tissues treated with 0.5LD50 of asoxime, obidoxime and K027. Acute damages were enlarged after treatment with 0.5LD50 and 1.0LD50 of all reactivators during the next 7 days. The most prominent changes were seen in rats treated with 1.0LD50 of K048 and K075 (P < 0.001 vs. control and asoxime-treated group). All reactivators given by a single, high, unitary dose regimen, have an adverse effect not only on the main visceral tissue, but on the whole rat as well, but the exact mechanism of cellular injury remains to be confirmed in further investigation.
- MeSH
- Biopsy MeSH
- Chemical Warfare Agents adverse effects chemistry toxicity MeSH
- Histocytochemistry MeSH
- Rats MeSH
- Lethal Dose 50 MeSH
- Molecular Structure MeSH
- Organ Specificity MeSH
- Oximes administration & dosage adverse effects chemistry toxicity MeSH
- Lung drug effects metabolism pathology MeSH
- Viscera drug effects pathology MeSH
- Dose-Response Relationship, Drug MeSH
- Stomach drug effects pathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chemical Warfare Agents MeSH
- Oximes MeSH
Endotoxemia is associated by dysregulated apoptosis of immune and non-immune cells. We investigated whether simvastatin has anti-apoptotic effects, and induces hepatocytes and lymphocytes survival signaling in endotoxin-induced liver and spleen injuries. Wistar rats were divided into the groups pretreated with simvastatin (20 or 40 mg/kg, orally) prior to a non-lethal dose of lipopolysaccharide (LPS), the LPS group, and the control. The severity of tissue inflammatory injuries was expressed as hepatic damage scores (HDS) and spleen damage scores (SDS), respectively. The apoptotic cell was detected by TUNEL (Terminal deoxynucleotidyl transferase dUTP Nick End Labeling) and immunohistochemical staining (expression of cleaved caspase-3, and anti-apoptotic Bcl-xL, survivin and NF-κB/p65). Simvastatin dose-dependently abolished HDS and SDS induced by LPS (p < 0.01), respectively. Simvastatin 40 mg/kg significantly decreased apoptotic index and caspase-3 cleavage in hepatocytes and lymphocytes (p < 0.01 vs. LPS group, respectively), while Bcl-XL markedly increased accordingly with simvastatin doses. In the simvastatin, groups were determined markedly increased cytoplasmic expression of survivin associated with nuclear positivity of NF-κB, in both hepatocytes and lymphocytes (p < 0.01 vs. LPS group). Cell-protective effects of simvastatin against LPS seemed to be mediated by up-regulation of survivin, which leads to reduced caspase-3 activation and inhibition of hepatocytes and lymphocytes apoptosis.
- Keywords
- NF-κB/p65, apoptosis, endotoxin, hepatocytes, lymphocytes, simvastatin, survivin,
- Publication type
- Journal Article MeSH
Therapeutic application of newly developed oximes is limited due to their adverse effects on different tissues. Within this article, it has been investigated which morphological changes could be observed in Wistar rats after the treatment with increasing doses of selected acetyl cholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. Subsequently, heart, diaphragm and musculus popliteus were obtained for pathohistological and semiquantitative analysis 24 hrs and 7 days after im administration of a single dose of 0.1 LD50, 0.5 LD50, and 1.0 LD50 of each oxime. Different muscle damage score was based on an estimation scale from 0 (no damage) to 5 (strong damage). In rats treated with 0.1 LD50 of each oxime, muscle fibres did not show any change. The intensive degeneration was found in all muscles after treatment with 0.5 LD50 of asoxime and obidoxime, respectively. Acute toxic muscle injury was developed within 7 days following treatment with 0.5 LD50 and 1.0 LD50 of each oxime, with the highest values in K048 and K075 group (P < 0.001 vs. control and asoxime), respectively. The early muscle alterations observed in our study seem to contribute to the pathogenesis of the oxime-induced toxic muscle injury, which probably manifests as necrosis and/or inflammation.
- MeSH
- Diaphragm drug effects injuries MeSH
- Muscle, Skeletal drug effects injuries MeSH
- Rats MeSH
- Myositis chemically induced MeSH
- Necrosis MeSH
- Oximes toxicity MeSH
- Rats, Wistar MeSH
- Pyridinium Compounds toxicity MeSH
- Heart drug effects MeSH
- Muscles drug effects pathology MeSH
- Toxicity Tests, Acute MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane dibromide MeSH Browser
- 1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane MeSH Browser
- K075 compound MeSH Browser
- Oximes MeSH
- Pyridinium Compounds MeSH