Most cited article - PubMed ID 30146365
TP53 Mutation and Complex Karyotype Portends a Dismal Prognosis in Patients With Mantle Cell Lymphoma
Ibrutinib revolutionized therapy for relapsed/refractory (R/R) mantle cell lymphoma (MCL). Real-world data on the outcome of unselected patients are still limited. We analyzed 77 R/R MCL patients receiving ibrutinib with at least one prior systemic anti-lymphoma therapy. After a median follow-up of 14.0 months, 56 patients relapsed/progressed, and 45 died. The overall response rate was 66%, with 31% of complete metabolic remissions on PET/CT. The median progression-free and overall survival (OS) rates were 10.3 and 23.1 months, respectively. The median OS from ibrutinib failure was 3.7 months. High proliferation rate by Ki67 (≥ 30%) and two or more previous therapy lines both negatively correlated with outcome (HR = 2.2, p = 0.04, and HR = 2.06, p = 0.08, respectively). Female gender borderline correlated with better outcome (HR = 0.53, p = 0.08). In multivariate analysis, Ki67 and response to ibrutinib both correlated with OS (p < 0.05). Importantly, ibrutinib appeared to better control nodal and extranodal lymphoma than bone marrow (BM) involvement. From 20 patients with detectable BM infiltration (before ibrutinib initiation) achieving complete (n = 13) or partial (n = 7) metabolic remission, none achieved remission in BM. We confirmed good efficacy of ibrutinib in unselected heavily pre-treated MCL patients. Our findings support the use of a combination of ibrutinib and rituximab in patients with BM involvement.
- Keywords
- Bone marrow, Bruton tyrosine kinase, Chemoresistance, Ibrutinib, Mantle cell lymphoma,
- MeSH
- Ki-67 Antigen MeSH
- Adult MeSH
- Humans MeSH
- Lymphoma, Mantle-Cell * pathology MeSH
- Positron Emission Tomography Computed Tomography MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Ki-67 Antigen MeSH
- ibrutinib MeSH Browser
Chronic lymphocytic leukaemia (CLL) is a genetically, morphologically and phenotypically heterogeneous chronic disease with clinical variability between patients. Whether the significant heterogeneity of cell size within the CLL population contributes to the heterogeneous features of this disease has not been investigated. The present study aimed to characterise the phenotypic and functional properties of two subpopulations of typical CLL cells that differ in cell size: small (s-CLL) and large (l-CLL) CLL cells delineated by forward scatter cytometry. The s-CLL cells were characterised by the CD5lowCXCR4hi phenotype, while the l-CLL cells were characterised by the CD5hiCXCR4dim phenotype and indicated a higher expression of CXCR3, CD20, CD38 and HLA-DR. The l-CLL cells displayed higher migration activity towards CXCL12, a tendency towards a higher proliferation rate and an increased capacity to produce IgM in the presence of CpG compared with s-CLL cells. When stimulated with CpG and CXCL12, l-CLL cells were characterised by a higher polarisation phenotype and motility than s-CLL cells. Our study revealed that the differences in CLL cell size reflected their activation status, polarisation and migratory abilities. Our data provide evidence of the importance of cell-size heterogeneity within a CLL pool and the dynamics of cell-size changes for disease pathogenesis, thus deserving further investigation.
- Keywords
- cell-size heterogeneity, chronic lymphocytic leukaemia, migration, polarisation, pool of leukemic cells,
- Publication type
- Journal Article MeSH
Extramedullary disease (EMM) represents a rare, aggressive and mostly resistant phenotype of multiple myeloma (MM). EMM is frequently associated with high-risk cytogenetics, but their complex genomic architecture is largely unexplored. We used whole-genome optical mapping (Saphyr, Bionano Genomics) to analyse the genomic architecture of CD138+ cells isolated from bone-marrow aspirates from an unselected cohort of newly diagnosed patients with EMM (n = 4) and intramedullary MM (n = 7). Large intrachromosomal rearrangements (> 5 Mbp) within chromosome 1 were detected in all EMM samples. These rearrangements, predominantly deletions with/without inversions, encompassed hundreds of genes and led to changes in the gene copy number on large regions of chromosome 1. Compared with intramedullary MM, EMM was characterised by more deletions (size range of 500 bp-50 kbp) and fewer interchromosomal translocations, and two EMM samples had copy number loss in the 17p13 region. Widespread genomic heterogeneity and novel aberrations in the high-risk IGH/IGK/IGL, 8q24 and 13q14 regions were detected in individual patients but were not specific to EMM/MM. Our pilot study revealed an association of chromosome 1 abnormalities in bone marrow myeloma cells with extramedullary progression. Optical mapping showed the potential for refining the complex genomic architecture in MM and its phenotypes.
- MeSH
- Bone Marrow Cells pathology MeSH
- Genome-Wide Association Study methods MeSH
- Chromosome Aberrations * MeSH
- Cytogenetic Analysis methods MeSH
- Cohort Studies MeSH
- Bone Marrow diagnostic imaging metabolism pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Chromosomes, Human, Pair 1 * genetics MeSH
- Multiple Myeloma genetics pathology MeSH
- Pilot Projects MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
BACKGROUND: The antifibrotic drugs nintedanib and pirfenidone are used for the treatment of idiopathic pulmonary fibrosis (IPF). We analysed the association of common profibrotic polymorphisms in MUC5B (mucin 5B, rs35705950) and DSP (desmoplakin, rs2076295) on antifibrotic treatment outcomes in IPF. METHODS: MUC5B rs35705950 and DSP rs2076295 were assessed in IPF patients (n = 210, 139 men/71 women) from the Czech EMPIRE registry and age- or sex-matched healthy individuals (n = 205, 125 men/80 women). Genetic data were collated with overall survival (OS), acute exacerbation episodes, worsening lung function and antifibrotic treatment. RESULTS: We confirmed overexpression of the MUC5B rs35705950*T allele (55.2% versus 20.9%, p < 0.001) and the DSP rs2076295*G allele (80.4% versus 68.3%, p < 0.001) in IPF compared with controls. On antifibrotic drugs, lower mortability was observed in IPF patients with DSP G* allele (p = 0.016) and MUC5B T* allele (p = 0.079). Carriers of the DSP rs2076295*G allele benefitted from nintedanib treatment compared with TT genotype by a longer OS [hazard ratio (HR) = 7.99; 95% confidence interval (CI) = 1.56-40.90; p = 0.013] and a slower decline in lung function (HR = 8.51; 95% CI = 1.68-43.14; p = 0.010). Patients with a TT genotype (rs2076295) benefitted from treatment with pirfenidone by prolonged OS (p = 0.040; HR = 0.35; 95% CI = 0.13-0.95) compared with nintedanib treatment. Both associations were confirmed by cross-validation analysis. After stratifying by MUC5B rs35705950*T allele carriage, no difference in treatment outcome was observed for nintedanib or pirfenidone (p = 0.784). In the multivariate model, smoking, age, forced vital capacity (FVC) and DLCO (diffuse lung capacity) at the IPF diagnosis were associated with survival. CONCLUSION: Our real-world study showed that IPF patients with MUC5B T* allele or DSP G* allele profit from antifibrotic treatment by lower mortability. Moreover, carriers of the DSP rs2076295*G allele benefit from treatment with nintedanib, and TT genotype from treatment with pirfenidone. MUC5B rs35705950 did not impact the outcome of treatment with either nintedanib or pirfenidone. Our single-registry pilot study should be confirmed with an independent patient cohort.
- Keywords
- IPF, antifibrotic treatment, desmoplakin, mucin 5, single nucleotide polymorphisms,
- MeSH
- Desmoplakins * genetics MeSH
- Idiopathic Pulmonary Fibrosis * drug therapy genetics MeSH
- Indoles * therapeutic use MeSH
- Humans MeSH
- Mutation MeSH
- Pilot Projects MeSH
- Pyridones * therapeutic use MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Desmoplakins * MeSH
- Indoles * MeSH
- nintedanib MeSH Browser
- pirfenidone MeSH Browser
- Pyridones * MeSH
The tissue microenvironment in chronic lymphocytic leukaemia (CLL) plays a key role in the pathogenesis of CLL, but the complex blood microenvironment in CLL has not yet been fully characterised. Therefore, immunophenotyping of circulating immune cells in 244 CLL patients and 52 healthy controls was performed using flow cytometry and analysed by multivariate Patient Similarity Networks (PSNs). Our study revealed high inter-individual heterogeneity in the distribution and activation of bystander immune cells in CLL, depending on the bulk of the CLL cells. High CLL counts were associated with low activation on circulating monocytes and T cells and vice versa. The highest activation of immune cells, particularly of intermediate and non-classical monocytes, was evident in patients treated with novel agents. PSNs revealed a low activation of immune cells in CLL progression, irrespective of IgHV status, Binet stage and TP53 disruption. Patients with high intermediate monocytes (> 5.4%) with low activation were 2.5 times more likely (95% confidence interval 1.421-4.403, P = 0.002) to had shorter time-to-treatment than those with low monocyte counts. Our study demonstrated the association between the activation of circulating immune cells and the bulk of CLL cells. The highest activation of bystander immune cells was detected in patients with slow disease course and in those treated with novel agents. The subset of intermediate monocytes showed predictive value for time-to-treatment in CLL.
- MeSH
- Models, Biological MeSH
- Leukemia, Lymphocytic, Chronic, B-Cell blood immunology pathology MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Tumor Microenvironment immunology MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Mantle cell lymphoma (MCL) is a subtype of B-cell lymphoma with a large number of recurrent cytogenetic/molecular aberrations. Approximately 5-10% of patients do not respond to frontline immunochemotherapy. Despite many useful prognostic indexes, a reliable marker of chemoresistance is not available. We evaluated the prognostic impact of seven recurrent gene aberrations including tumor suppressor protein P53 (TP53) and cyclin dependent kinase inhibitor 2A (CDKN2A) in the cohort of 126 newly diagnosed consecutive MCL patients with bone marrow involvement ≥5% using fluorescent in-situ hybridization (FISH) and next-generation sequencing (NGS). In contrast to TP53, no pathologic mutations of CDKN2A were detected by NGS. CDKN2A deletions were found exclusively in the context of other gene aberrations suggesting it represents a later event (after translocation t(11;14) and aberrations of TP53, or ataxia telangiectasia mutated (ATM)). Concurrent deletion of CDKN2A and aberration of TP53 (deletion and/or mutation) represented the most significant predictor of short EFS (median 3 months) and OS (median 10 months). Concurrent aberration of TP53 and CDKN2A is a new, simple, and relevant index of chemoresistance in MCL. Patients with concurrent aberration of TP53 and CDKN2A should be offered innovative anti-lymphoma therapy and upfront consolidation with allogeneic stem cell transplantation.
- Keywords
- CDKN2A, TP53, chemoresistance, mantle cell lymphoma, prognostic markers,
- Publication type
- Journal Article MeSH
The insufficient standardization of diagnostic next-generation sequencing (NGS) still limits its implementation in clinical practice, with the correct detection of mutations at low variant allele frequencies (VAF) facing particular challenges. We address here the standardization of sequencing coverage depth in order to minimize the probability of false positive and false negative results, the latter being underestimated in clinical NGS. There is currently no consensus on the minimum coverage depth, and so each laboratory has to set its own parameters. To assist laboratories with the determination of the minimum coverage parameters, we provide here a user-friendly coverage calculator. Using the sequencing error only, we recommend a minimum depth of coverage of 1,650 together with a threshold of at least 30 mutated reads for a targeted NGS mutation analysis of ≥3% VAF, based on the binomial probability distribution. Moreover, our calculator also allows adding assay-specific errors occurring during DNA processing and library preparation, thus calculating with an overall error of a specific NGS assay. The estimation of correct coverage depth is recommended as a starting point when assessing thresholds of NGS assay. Our study also points to the need for guidance regarding the minimum technical requirements, which based on our experience should include the limit of detection (LOD), overall NGS assay error, input, source and quality of DNA, coverage depth, number of variant supporting reads, and total number of target reads covering variant region. Further studies are needed to define the minimum technical requirements and its reporting in diagnostic NGS.
- Keywords
- TP53 gene, coverage depth calculator, next-generation sequencing, sequencing error, small subclones, variant allele frequency (VAF),
- Publication type
- Journal Article MeSH