Nejvíce citovaný článek - PubMed ID 30356077
Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography
Acinetobacter baumannii (AB) is an opportunistic pathogen with growing clinical relevance due to its increasing level of antimicrobial resistance in the last few decades. In the event of an AB hospital outbreak, fast detection and localization of the pathogen is crucial, to prevent its further spread. However, contemporary diagnostic tools do not always meet the requirements for rapid and accurate diagnosis. For this reason, we report here the possibility of using gallium-68 labeled siderophores, bacterial iron chelators, for positron emission tomography imaging of AB infections. In our study, we radiolabeled several siderophores and tested their in vitro uptake in AB cultures. Based on the results and the in vitro properties of studied siderophores, we selected two of them for further in vivo testing in infectious models. Both selected siderophores, ferrioxamine E and ferrirubin, showed promising in vitro characteristics. In vivo, we observed rapid pharmacokinetics and no excessive accumulation in organs other than the excretory organs in normal mice. We demonstrated that the radiolabeled siderophores accumulate in AB-infected tissue in three animal models: a murine model of myositis, a murine model of dorsal wound infection and a rat model of pneumonia. These results suggest that both siderophores radiolabeled with Ga-68 could be used for PET imaging of AB infection.
- Klíčová slova
- Acinetobacter baumannii, PET, gallium-68, radiolabeling, siderophores,
- MeSH
- Acinetobacter baumannii * MeSH
- infekce bakteriemi rodu Acinetobacter * diagnostické zobrazování mikrobiologie MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- pozitronová emisní tomografie * metody MeSH
- radioizotopy galia * chemie MeSH
- siderofory * chemie farmakokinetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- Gallium-68 MeSH Prohlížeč
- radioizotopy galia * MeSH
- siderofory * MeSH
Background/Objectives: PET imaging of bacterial infection could potentially provide added benefits for patient care through non-invasive means. [68Ga]Ga-desferrioxamine B-a radiolabelled siderophore-shows specific uptake by human-pathogenic bacteria like Staphylococcus aureus or Pseudomonas aeruginosa and sufficient serum stability for clinical application. In this report, we present data for automated production of [68Ga]Ga-desferrioxamine B on two different cassette-based synthesis modules (Modular-Lab PharmTracer and GRP 3V) utilising commercially obtainable cassettes together with a licensed 68Ge/68Ga radionuclide generator. Methods: Quality control, including the determination of radiochemical purity, as well as a system suitability test, was set up via RP-HPLC on a C18 column. The two described production processes use an acetic acid/acetate buffer system with ascorbic acid as a radical scavenger for radiolabelling, yielding ready-to-use formulations with sufficient activity yield. Results: Batch data analysis demonstrated radiochemical purity of >95% by RP-HPLC combined with ITLC and excellent stability up to 2 h after synthesis. Specifications for routine production were set up and validated with four masterbatches for each synthesis module. Conclusions: Based on this study, an academic clinical trial for imaging of bacterial infection was initiated. Both described synthesis methods enable automated production of [68Ga]Ga-desferrioxamine B in-house with high reproducibility for clinical application.
- Klíčová slova
- PET, desferrioxamine B, gallium-68, imaging, infection, validation,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Siderophores are small iron-binding molecules produced by microorganisms to facilitate iron acquisition from the environment. Radiolabelled siderophores offer a promising solution for infection imaging, as they can specifically target the pathophysiological mechanisms of pathogens. Gallium-68 can replace the iron in siderophores, enabling molecular imaging with positron emission tomography (PET). Stereospecific interactions play a crucial role in the recognition of receptors, transporters, and iron utilisation. Furthermore, these interactions have an impact on the host environment, affecting pharmacokinetics and biodistribution. This study examines the influence of siderophore stereoisomerism on imaging properties, with a focus on ferrirubin (FR) and ferrirhodin (FRH), two cis-trans isomeric siderophores of the ferrichrome type. RESULTS: Tested siderophores were labelled with gallium-68 with high radiochemical purity. The resulting complexes differed in their in vitro characteristics. [68Ga]Ga-FRH showed less hydrophilic properties and higher protein binding values than [68Ga]Ga-FR. The stability studies confirmed the high radiochemical stability of both [68Ga]Ga-siderophores in all examined media. Both siderophores were found to be taken up by S. aureus, K. pneumoniae and P. aeruginosa with similar efficacy. The biodistribution tested in normal mice showed rapid renal clearance with low blood pool retention and fast clearance from examined organs for [68Ga]Ga-FR, whereas [68Ga]Ga-FRH showed moderate retention in blood, resulting in slower pharmacokinetics. PET/CT imaging of mice injected with [68Ga]Ga-FR and [68Ga]Ga-FRH confirmed findings from ex vivo biodistribution studies. In a mouse model of S. aureus myositis, both radiolabeled siderophores showed radiotracer accumulation at the site of infection. CONCLUSIONS: The 68Ga-complexes of stereoisomers ferrirubin and ferrirhodin revealed different pharmacokinetic profiles. In vitro uptake was not affected by isomerism. Both compounds had uptake with the same bacterial culture with similar efficacy. PET/CT imaging showed that the [68Ga]Ga-complexes accumulate at the site of S. aureus infection, highlighting the potential of [68Ga]Ga-FR as a promising tool for infection imaging. In contrast, retention of the radioactivity in the blood was observed for [68Ga]Ga-FRH. In conclusion, the stereoisomerism of potential radiotracers should be considered, as even minor structural differences can influence their pharmacokinetics and, consequently, the results of PET imaging.
- Klíčová slova
- Imaging, Infection, Positron emission tomography, Siderophore, Stereoisomers,
- Publikační typ
- časopisecké články MeSH
Bacteria from the Burkholderia cepacia complex are generally considered to be non-pathogenic to the healthy population. However, some of these species may cause serious nosocomial infections in immunocompromised patients; as such, it is essential to diagnose these infections rapidly so that adequate treatment can be initiated. We report here the use of a radiolabeled siderophore, ornibactin (ORNB), for positron emission tomography imaging. We successfully radiolabeled ORNB with gallium-68 with high radiochemical purity and proved that the resulting complex has optimal in vitro characteristics. In mice, the complex did not show excessive accumulation in organs and was excreted in the urine. We demonstrated that the [68Ga]Ga-ORNB complex accumulates at the site of Burkholderia multivorans infection, including pneumonia, in two animal infection models. These results suggest that [68Ga]Ga-ORNB is a promising tool for the diagnosis, monitoring, and evaluation of the therapeutic response to B. cepacia complex infection.
- MeSH
- Burkholderia cepacia komplex * MeSH
- infekce bakteriemi rodu Burkholderia * diagnostické zobrazování epidemiologie MeSH
- myši MeSH
- pozitronová emisní tomografie MeSH
- radioizotopy galia MeSH
- siderofory MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- radioizotopy galia MeSH
- siderofory MeSH
In acutely ill patients, particularly in intensive care units or in mixed infections, time to a microbe-specific diagnosis is critical to a successful outcome of therapy. We report the application of evolving technologies involving mass spectrometry to diagnose and monitor a patient's course. As proof of this concept, we studied five patients and used two rat models of mono-infection and coinfection. We report the noninvasive combined monitoring of Aspergillus fumigatus and Pseudomonas aeruginosa infection. The invasive coinfection was detected by monitoring the fungal triacetylfusarinine C and ferricrocin siderophore levels and the bacterial metabolites pyoverdin E, pyochelin, and 2-heptyl-4-quinolone, studied in the urine, endotracheal aspirate, or breath condensate. The coinfection was monitored by mass spectrometry followed by isotopic data filtering. In the rat infection model, detection indicated 100-fold more siderophores in urine compared to sera, indicating the diagnostic potential of urine sampling. The tools utilized in our studies can now be examined in large clinical series, where we could expect the accuracy and speed of diagnosis to be competitive with conventional methods and provide advantages in unraveling the complexities of mixed infections.
- Klíčová slova
- Aspergillus fumigatus, Pseudomonas aeruginosa, coinfection, invasive infection, noninvasive diagnosis, quorum-sensing molecules, siderophores, virulence factor,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
PURPOSE: With the increase of especially hospital-acquired infections, timely and accurate diagnosis of bacterial infections is crucial for effective patient care. Molecular imaging has the potential for specific and sensitive detection of infections. Siderophores are iron-specific chelators recognized by specific bacterial transporters, representing one of few fundamental differences between bacterial and mammalian cells. Replacing iron by gallium-68 without loss of bioactivity is possible allowing molecular imaging by positron emission tomography (PET). Here, we report on the preclinical evaluation of the clinically used siderophore, desferrioxamine-B (Desferal®, DFO-B), radiolabelled with 68Ga for imaging of bacterial infections. METHODS: In vitro characterization of [68Ga]Ga-DFO-B included partition coefficient, protein binding and stability determination. Specific uptake of [68Ga]Ga-DFO-B was tested in vitro in different microbial cultures. In vivo biodistribution was studied in healthy mice and dosimetric estimation for human setting performed. PET/CT imaging was carried out in animal infection models, representing the most common pathogens. RESULTS: DFO-B was labelled with 68Ga with high radiochemical purity and displayed hydrophilic properties, low protein binding and high stability in human serum and PBS. The high in vitro uptake of [68Ga]Ga-DFO-B in selected strains of Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus agalactiae could be blocked with an excess of iron-DFO-B. [68Ga]Ga-DFO-B showed rapid renal excretion and minimal retention in blood and other organs in healthy mice. Estimated human absorbed dose was 0.02 mSv/MBq. PET/CT images of animal infection models displayed high and specific accumulation of [68Ga]Ga-DFO-B in both P. aeruginosa and S. aureus infections with excellent image contrast. No uptake was found in sterile inflammation, heat-inactivated P. aeruginosa or S. aureus and Escherichia coli lacking DFO-B transporters. CONCLUSION: DFO-B can be easily radiolabelled with 68Ga and displayed suitable in vitro characteristics and excellent pharmacokinetics in mice. The high and specific uptake of [68Ga]Ga-DFO-B by P. aeruginosa and S. aureus was confirmed both in vitro and in vivo, proving the potential of [68Ga]Ga-DFO-B for specific imaging of bacterial infections. As DFO-B is used in clinic for many years and the estimated radiation dose is lower than for other 68Ga-labelled radiopharmaceuticals, we believe that [68Ga]Ga-DFO-B has a great potential for clinical translation.
- Klíčová slova
- Desferrioxamine-B, Gallium-68, Imaging, Infection, PET,
- MeSH
- deferoxamin * MeSH
- myši MeSH
- PET/CT MeSH
- počítačová rentgenová tomografie MeSH
- pozitronová emisní tomografie MeSH
- radioizotopy galia * MeSH
- Staphylococcus aureus MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deferoxamin * MeSH
- radioizotopy galia * MeSH
A procedure for processing frozen rat lung tissue sections for scanning electron microscopy (SEM) from deeply frozen samples initially collected and stored for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was developed. The procedure employed slow thawing of the frozen sections while floating on the surface and melting in a fixative solution. After the float-washing step, the sections were dehydrated in a graded ethanol series and dried in a critical point dryer. The SEM generated images with well-preserved structures, allowing for monitoring of bacterial cells and fungal hyphae in the infected tissue. Importantly, the consecutive nonfixed frozen sections were fully compatible with MALDI-MSI, providing molecular biomarker maps of Pseudomonas aeruginosa. The protocol enables bimodal image fusion in the in-house software CycloBranch, as demonstrated by SEM and MALDI-MSI.
- Klíčová slova
- bacteria, fixation, fungi, matrix-assisted laser desorption/ionization mass spectrometry imaging, rat lung tissue, scanning electron microscopy,
- Publikační typ
- časopisecké články MeSH
Invasive fungal infections such as aspergillosis are life-threatening diseases mainly affecting immuno-compromised patients. The diagnosis of fungal infections is difficult, lacking specificity and sensitivity. This review covers findings on the preclinical use of siderophores for the molecular imaging of infections. Siderophores are low molecular mass chelators produced by bacteria and fungi to scavenge the essential metal iron. Replacing iron in siderophores by radionuclides such as gallium-68 allowed the targeted imaging of infection by positron emission tomography (PET). The proof of principle was the imaging of pulmonary Aspergillus fumigatus infection using [68Ga]Ga-triacetylfusarinine C. Recently, this approach was expanded to imaging of bacterial infections, i.e., with Pseudomonas aeruginosa. Moreover, the conjugation of siderophores and fluorescent dyes enabled the generation of hybrid imaging compounds, allowing the combination of PET and optical imaging. Nevertheless, the high potential of these imaging probes still awaits translation into clinics.
- Klíčová slova
- bacterial, fluorescence, fungal, imaging, infection, positron emission tomography, siderophore,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH