Nejvíce citovaný článek - PubMed ID 22172389
BACKGROUND: Prostate-specific membrane antigen (PSMA) is an established target for the imaging and treatment of prostate cancer. This study focused on the preclinical evaluation of three novel PSMA inhibitors-P15, P16, and P19-which were structurally modified compared to the clinically used PSMA-617. Two main strategies were pursued: a chemical approach following the so-called reversed synthetic strategy, and the replacement of the naphthyl-based linker moiety with an analogous diphenyl-based moiety. The aim was to assess the impact of these modifications on physicochemical properties, in vitro behaviour, and in vivo pharmacokinetics following radiolabelling with ⁶⁸Ga. RESULTS: Radiolabelling of all three novel compounds with ⁶⁸Ga resulted in high radiochemical purity above 98% under physiological pH conditions and above 97% during stability testing in human plasma. All compounds exhibited hydrophilic characteristics based on partition coefficient measurements. Notable differences were observed in plasma protein binding, with P15 and P16 showing significantly lower binding compared to PSMA-617 and P19. In vitro assays using LNCaP prostate cancer cells demonstrated similar cellular uptake and internalization across all tested compounds. In vivo evaluation using Positron Emission Tomography/Computed Tomography (PET/CT) imaging in LNCaP tumour-bearing mice confirmed the tumour-targeting ability of all three inhibitors. These findings were further supported by biodistribution studies, which highlighted efficient and specific accumulation in tumour tissue. Among the tested compounds, P19 demonstrated the most promising overall profile in terms of stability, binding characteristics, and tumour uptake. CONCLUSIONS: The stereochemical modifications in the linker region significantly influenced the in vitro and in vivo behaviour of the PSMA inhibitors. Despite similar cellular uptake, differences in plasma protein binding and pharmacokinetics were evident. Among the three novel compounds, P19 emerged as a particularly promising candidate for further investigation, also indicating that the diphenyl moiety might serve as a favourable linker building block in analogy to the naphthyl moiety. Our observations suggest potential not only for diagnostic imaging with ⁶⁸Ga, but also for therapeutic applications using 177Lu, which offers a longer half-life suitable for delayed imaging and treatment intervals in prostate cancer management.
- Klíčová slova
- PSMA, Preclicnical PET/CT, Prostate cancer, Radiopharmaceuticals, Theranostics,
- Publikační typ
- časopisecké články MeSH
Acinetobacter baumannii (AB) is an opportunistic pathogen with growing clinical relevance due to its increasing level of antimicrobial resistance in the last few decades. In the event of an AB hospital outbreak, fast detection and localization of the pathogen is crucial, to prevent its further spread. However, contemporary diagnostic tools do not always meet the requirements for rapid and accurate diagnosis. For this reason, we report here the possibility of using gallium-68 labeled siderophores, bacterial iron chelators, for positron emission tomography imaging of AB infections. In our study, we radiolabeled several siderophores and tested their in vitro uptake in AB cultures. Based on the results and the in vitro properties of studied siderophores, we selected two of them for further in vivo testing in infectious models. Both selected siderophores, ferrioxamine E and ferrirubin, showed promising in vitro characteristics. In vivo, we observed rapid pharmacokinetics and no excessive accumulation in organs other than the excretory organs in normal mice. We demonstrated that the radiolabeled siderophores accumulate in AB-infected tissue in three animal models: a murine model of myositis, a murine model of dorsal wound infection and a rat model of pneumonia. These results suggest that both siderophores radiolabeled with Ga-68 could be used for PET imaging of AB infection.
- Klíčová slova
- Acinetobacter baumannii, PET, gallium-68, radiolabeling, siderophores,
- MeSH
- Acinetobacter baumannii * MeSH
- infekce bakteriemi rodu Acinetobacter * diagnostické zobrazování mikrobiologie MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- pozitronová emisní tomografie * metody MeSH
- radioizotopy galia * chemie MeSH
- siderofory * chemie farmakokinetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- Gallium-68 MeSH Prohlížeč
- radioizotopy galia * MeSH
- siderofory * MeSH
The pathogenic fungus Aspergillus fumigatus utilizes a cyclic ferrioxamine E (FOXE) siderophore to acquire iron from the host. Biomimetic FOXE analogues were labeled with gallium-68 for molecular imaging with PET. [68Ga]Ga(III)-FOXE analogues were internalized in A. fumigatus cells via Sit1. Uptake of [68Ga]Ga(III)-FOX 2-5, the most structurally alike analogue to FOXE, was high by both A. fumigatus and bacterial Staphylococcus aureus. However, altering the ring size provoked species-specific uptake between these two microbes: ring size shortening by one methylene unit (FOX 2-4) increased uptake by A. fumigatus compared to that by S. aureus, whereas lengthening the ring (FOX 2-6 and 3-5) had the opposite effect. These results were consistent both in vitro and in vivo, including PET imaging in infection models. Overall, this study provided valuable structural insights into the specificity of siderophore uptake and, for the first time, opened up ways for selective targeting and imaging of microbial pathogens by siderophore derivatization.
- MeSH
- Aspergillus fumigatus * metabolismus chemie MeSH
- aspergilóza * diagnostické zobrazování mikrobiologie MeSH
- biomimetické materiály chemie metabolismus MeSH
- cyklické peptidy MeSH
- deferoxamin chemie MeSH
- druhová specificita MeSH
- myši MeSH
- pozitronová emisní tomografie * metody MeSH
- radioizotopy galia * chemie MeSH
- siderofory * chemie metabolismus MeSH
- Staphylococcus aureus * metabolismus MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklické peptidy MeSH
- deferoxamin MeSH
- ferrioxamine E MeSH Prohlížeč
- Gallium-68 MeSH Prohlížeč
- radioizotopy galia * MeSH
- siderofory * MeSH
- železité sloučeniny MeSH
BACKGROUND: Siderophores are small iron-binding molecules produced by microorganisms to facilitate iron acquisition from the environment. Radiolabelled siderophores offer a promising solution for infection imaging, as they can specifically target the pathophysiological mechanisms of pathogens. Gallium-68 can replace the iron in siderophores, enabling molecular imaging with positron emission tomography (PET). Stereospecific interactions play a crucial role in the recognition of receptors, transporters, and iron utilisation. Furthermore, these interactions have an impact on the host environment, affecting pharmacokinetics and biodistribution. This study examines the influence of siderophore stereoisomerism on imaging properties, with a focus on ferrirubin (FR) and ferrirhodin (FRH), two cis-trans isomeric siderophores of the ferrichrome type. RESULTS: Tested siderophores were labelled with gallium-68 with high radiochemical purity. The resulting complexes differed in their in vitro characteristics. [68Ga]Ga-FRH showed less hydrophilic properties and higher protein binding values than [68Ga]Ga-FR. The stability studies confirmed the high radiochemical stability of both [68Ga]Ga-siderophores in all examined media. Both siderophores were found to be taken up by S. aureus, K. pneumoniae and P. aeruginosa with similar efficacy. The biodistribution tested in normal mice showed rapid renal clearance with low blood pool retention and fast clearance from examined organs for [68Ga]Ga-FR, whereas [68Ga]Ga-FRH showed moderate retention in blood, resulting in slower pharmacokinetics. PET/CT imaging of mice injected with [68Ga]Ga-FR and [68Ga]Ga-FRH confirmed findings from ex vivo biodistribution studies. In a mouse model of S. aureus myositis, both radiolabeled siderophores showed radiotracer accumulation at the site of infection. CONCLUSIONS: The 68Ga-complexes of stereoisomers ferrirubin and ferrirhodin revealed different pharmacokinetic profiles. In vitro uptake was not affected by isomerism. Both compounds had uptake with the same bacterial culture with similar efficacy. PET/CT imaging showed that the [68Ga]Ga-complexes accumulate at the site of S. aureus infection, highlighting the potential of [68Ga]Ga-FR as a promising tool for infection imaging. In contrast, retention of the radioactivity in the blood was observed for [68Ga]Ga-FRH. In conclusion, the stereoisomerism of potential radiotracers should be considered, as even minor structural differences can influence their pharmacokinetics and, consequently, the results of PET imaging.
- Klíčová slova
- Imaging, Infection, Positron emission tomography, Siderophore, Stereoisomers,
- Publikační typ
- časopisecké články MeSH
Invasive fungal infections have become a major challenge for public health, mainly due to the growing numbers of immunocompromised patients, with high morbidity and mortality. Currently, conventional imaging modalities such as computed tomography and magnetic resonance imaging contribute largely to the noninvasive diagnosis and treatment evaluation of those infections. These techniques, however, often fall short when a fast, noninvasive and specific diagnosis of fungal infection is necessary. Molecular imaging, especially using nuclear medicine-based techniques, aims to develop fungal-specific radiotracers that can be tested in preclinical models and eventually translated to human applications. In the last few decades, multiple radioligands have been developed and tested as potential fungal-specific tracers. These include radiolabeled peptides, antifungal drugs, siderophores, fungal-specific antibodies, and sugars. In this review, we provide an overview of the pros and cons of the available radiotracers. We also address the future prospects of fungal-specific imaging.
- Klíčová slova
- PET, immunoPET, invasive fungal infection, radionuclide imaging, siderophores,
- MeSH
- antifungální látky terapeutické užití MeSH
- invazivní mykotické infekce * MeSH
- lidé MeSH
- mykózy * diagnostické zobrazování MeSH
- počítačová rentgenová tomografie MeSH
- pozitronová emisní tomografie metody MeSH
- protilátky fungální MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- antifungální látky MeSH
- protilátky fungální MeSH
Bacteria from the Burkholderia cepacia complex are generally considered to be non-pathogenic to the healthy population. However, some of these species may cause serious nosocomial infections in immunocompromised patients; as such, it is essential to diagnose these infections rapidly so that adequate treatment can be initiated. We report here the use of a radiolabeled siderophore, ornibactin (ORNB), for positron emission tomography imaging. We successfully radiolabeled ORNB with gallium-68 with high radiochemical purity and proved that the resulting complex has optimal in vitro characteristics. In mice, the complex did not show excessive accumulation in organs and was excreted in the urine. We demonstrated that the [68Ga]Ga-ORNB complex accumulates at the site of Burkholderia multivorans infection, including pneumonia, in two animal infection models. These results suggest that [68Ga]Ga-ORNB is a promising tool for the diagnosis, monitoring, and evaluation of the therapeutic response to B. cepacia complex infection.
- MeSH
- Burkholderia cepacia komplex * MeSH
- infekce bakteriemi rodu Burkholderia * diagnostické zobrazování epidemiologie MeSH
- myši MeSH
- pozitronová emisní tomografie MeSH
- radioizotopy galia MeSH
- siderofory MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- radioizotopy galia MeSH
- siderofory MeSH
Germination from conidia to hyphae and hyphal propagation of Aspergillus fumigatus are the key pathogenic steps in the development of invasive pulmonary aspergillosis (IPA). By applying in vitro observations in a clinical study of 13 patients diagnosed with probable IPA, here, we show that the transition from colonization to the A. fumigatus invasive stage is accompanied by the secretion of triacetylfusarinine C (TafC), triacetylfusarinine B (TafB), and ferricrocin (Fc) siderophores into urine, with strikingly better sensitivity performance than serum sampling. The best-performing index, the TafC/creatinine index, with a median value of 17.2, provided 92.3% detection sensitivity (95% confidence interval [CI], 64.0 to 99.8%) and 100% specificity (95% CI, 84.6 to 100%), i.e., substantially better than the corresponding indications provided by galactomannan (GM) and β-d-glucan (BDG) serology. For the same patient cohort, the serum GM and BDG sensitivities were 46.2 and 76.9%, respectively, and their specificities were 86.4 and 63.6%, respectively. The time-dependent specific appearance of siderophores in the host's urine represents an impactful clinical diagnostic advantage in the early discrimination of invasive aspergillosis from colonization. A favorable concentration of TafC in a clinical specimen distant from a deep infection site enables the noninvasive sampling of patients suffering from IPA. IMPORTANCE The importance of this research lies in the demonstration that siderophore analysis can distinguish between asymptomatic colonization and invasive pulmonary aspergillosis. We found clear associations between phases of fungal development, from conidial germination to the proliferative stage of invasive aspergillosis, and changes in secondary metabolite secretion. The critical extracellular fungal metabolites triacetylfusarinines C and B are produced during the polarized germination or postpolarized growth phase and reflect the morphological status of the proliferating pathogen. False positivity in Aspergillus diagnostics is minimized as mammalian cells do not synthesize Aspergillus siderophore or mycotoxin molecules.
- Klíčová slova
- Aspergillus fumigatus, colonization, invasive pulmonary aspergillosis, iron metabolism, mass spectrometry, noninvasive diagnosis, siderophore, urine analysis,
- Publikační typ
- časopisecké články MeSH
Fungal infections are a serious threat, especially for immunocompromised patients. Early and reliable diagnosis is crucial to treat such infections. The bacterially produced siderophore desferrioxamine B (DFO-B) is utilized by a variety of microorganisms for iron acquisition, while mammalian cells lack the uptake of DFO-B chelates. DFO-B is clinically approved for a variety of long-term chelation therapies. Recently, DFO-B-complexed gallium-68 ([68Ga]Ga-DFO-B) was shown to enable molecular imaging of bacterial infections by positron emission tomography (PET). Here, we demonstrate that [68Ga]Ga-DFO-B can also be used for the preclinical molecular imaging of pulmonary infection caused by the fungal pathogen Aspergillus fumigatus in a rat aspergillosis model. Moreover, by combining in vitro uptake studies and the chemical modification of DFO-B, we show that the cellular transport efficacy of ferrioxamine-type siderophores is impacted by the charge of the molecule and, consequently, the environmental pH. The chemical derivatization has potential implications for its diagnostic use and characterizes transport features of ferrioxamine-type siderophores.
- Klíčová slova
- Aspergillus fumigatus, PET, desferrioxamine B, gallium-68, imaging, infection, invasive pulmonary aspergillosis, pH, positron emission tomography, siderophore,
- Publikační typ
- časopisecké články MeSH
PURPOSE: With the increase of especially hospital-acquired infections, timely and accurate diagnosis of bacterial infections is crucial for effective patient care. Molecular imaging has the potential for specific and sensitive detection of infections. Siderophores are iron-specific chelators recognized by specific bacterial transporters, representing one of few fundamental differences between bacterial and mammalian cells. Replacing iron by gallium-68 without loss of bioactivity is possible allowing molecular imaging by positron emission tomography (PET). Here, we report on the preclinical evaluation of the clinically used siderophore, desferrioxamine-B (Desferal®, DFO-B), radiolabelled with 68Ga for imaging of bacterial infections. METHODS: In vitro characterization of [68Ga]Ga-DFO-B included partition coefficient, protein binding and stability determination. Specific uptake of [68Ga]Ga-DFO-B was tested in vitro in different microbial cultures. In vivo biodistribution was studied in healthy mice and dosimetric estimation for human setting performed. PET/CT imaging was carried out in animal infection models, representing the most common pathogens. RESULTS: DFO-B was labelled with 68Ga with high radiochemical purity and displayed hydrophilic properties, low protein binding and high stability in human serum and PBS. The high in vitro uptake of [68Ga]Ga-DFO-B in selected strains of Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus agalactiae could be blocked with an excess of iron-DFO-B. [68Ga]Ga-DFO-B showed rapid renal excretion and minimal retention in blood and other organs in healthy mice. Estimated human absorbed dose was 0.02 mSv/MBq. PET/CT images of animal infection models displayed high and specific accumulation of [68Ga]Ga-DFO-B in both P. aeruginosa and S. aureus infections with excellent image contrast. No uptake was found in sterile inflammation, heat-inactivated P. aeruginosa or S. aureus and Escherichia coli lacking DFO-B transporters. CONCLUSION: DFO-B can be easily radiolabelled with 68Ga and displayed suitable in vitro characteristics and excellent pharmacokinetics in mice. The high and specific uptake of [68Ga]Ga-DFO-B by P. aeruginosa and S. aureus was confirmed both in vitro and in vivo, proving the potential of [68Ga]Ga-DFO-B for specific imaging of bacterial infections. As DFO-B is used in clinic for many years and the estimated radiation dose is lower than for other 68Ga-labelled radiopharmaceuticals, we believe that [68Ga]Ga-DFO-B has a great potential for clinical translation.
- Klíčová slova
- Desferrioxamine-B, Gallium-68, Imaging, Infection, PET,
- MeSH
- deferoxamin * MeSH
- myši MeSH
- PET/CT MeSH
- počítačová rentgenová tomografie MeSH
- pozitronová emisní tomografie MeSH
- radioizotopy galia * MeSH
- Staphylococcus aureus MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deferoxamin * MeSH
- radioizotopy galia * MeSH
Invasive fungal infections such as aspergillosis are life-threatening diseases mainly affecting immuno-compromised patients. The diagnosis of fungal infections is difficult, lacking specificity and sensitivity. This review covers findings on the preclinical use of siderophores for the molecular imaging of infections. Siderophores are low molecular mass chelators produced by bacteria and fungi to scavenge the essential metal iron. Replacing iron in siderophores by radionuclides such as gallium-68 allowed the targeted imaging of infection by positron emission tomography (PET). The proof of principle was the imaging of pulmonary Aspergillus fumigatus infection using [68Ga]Ga-triacetylfusarinine C. Recently, this approach was expanded to imaging of bacterial infections, i.e., with Pseudomonas aeruginosa. Moreover, the conjugation of siderophores and fluorescent dyes enabled the generation of hybrid imaging compounds, allowing the combination of PET and optical imaging. Nevertheless, the high potential of these imaging probes still awaits translation into clinics.
- Klíčová slova
- bacterial, fluorescence, fungal, imaging, infection, positron emission tomography, siderophore,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH