Most cited article - PubMed ID 30498886
Fluorine polymer probes for magnetic resonance imaging: quo vadis?
Amphiphilic gradient copolymers are promising alternatives to block copolymers for self-assembled nanomaterials due to their straightforward synthesis via statistical copolymerization of monomers with different reactivities and hydrophilicity. By carefully selecting monomers, nanoparticles can be synthesized in a single step through gradient copolymerization-induced self-assembly (gPISA). We synthesized highly sensitive 19F MRI nanotracers via aqueous dispersion gPISA of hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) with core-forming N,N-(2,2,2-trifluoroethyl)acrylamide (TFEAM). The PPEGMA-grad-PTFEAM nanoparticles were optimized to achieve spherical morphology and exceptional 19F MRI performance. Noncytotoxicity was confirmed in Panc-1 cells. In vitro 19F MR relaxometry and imaging demonstrated their diagnostic imaging potential. Notably, these gradient copolymer nanotracers outperformed block copolymer analogs in 19F MRI performance due to their gradient architecture, enhancing 19F relaxivity. The synthetic versatility and superior 19F MRI performance of gradient copolymers highlight their potential in advanced diagnostic imaging applications.
- MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Contrast Media chemistry chemical synthesis MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Methacrylates * chemistry MeSH
- Cell Line, Tumor MeSH
- Nanoparticles chemistry MeSH
- Polyethylene Glycols * chemistry MeSH
- Polymerization MeSH
- Polymers chemistry chemical synthesis MeSH
- Fluorine-19 Magnetic Resonance Imaging methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Contrast Media MeSH
- Methacrylates * MeSH
- polyethylene glycol methacrylate MeSH Browser
- Polyethylene Glycols * MeSH
- Polymers MeSH
Magnetic resonance imaging (MRI) relies on appropriate contrast agents, especially for visualizing transplanted cells within host tissue. In recent years, compounds containing fluorine-19 have gained significant attention as MRI probe, particularly in dual 1H/19F-MR imaging. However, various factors affecting probe sensitivity, such as fluorine content and the equivalency of fluorine atoms, must be considered. In this study, we synthesized fluorinated micelles with adjustable surface positive charge density and investigated their physicochemical properties and MRI efficacy in phantoms and labeled cells. While the micelles exhibited clear signals in 19F-MR spectra and imaging, the concentrations required for MRI visualization of labeled cells were relatively high, adversely affecting cell viability. Despite their favourable physicochemical properties, achieving higher labeling rates without compromising cell viability during labeling remains a challenge for potential in vivo applications.
- Keywords
- 19F magnetic resonance imaging, 19F magnetic resonance spectroscopy, Cell labeling, Fluorinated micelles,
- MeSH
- Staining and Labeling methods MeSH
- Phantoms, Imaging MeSH
- Fluorine chemistry MeSH
- Halogenation MeSH
- Cations * chemistry MeSH
- Contrast Media chemistry MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Micelles * MeSH
- Mice MeSH
- Cell Survival * drug effects MeSH
- Fluorine-19 Magnetic Resonance Imaging methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fluorine MeSH
- Cations * MeSH
- Contrast Media MeSH
- Micelles * MeSH
Gelatin-based photo-crosslinkable hydrogels are promising scaffold materials to serve regenerative medicine. They are widely applicable in additive manufacturing, which allows for the production of various scaffold microarchitectures in line with the anatomical requirements of the organ to be replaced or tissue defect to be treated. Upon their in vivo utilization, the main bottleneck is to monitor cell colonization along with their degradation (rate). In order to enable non-invasive visualization, labeling with MRI-active components like N-(2,2-difluoroethyl)acrylamide (DFEA) provides a promising approach. Herein, we report on the development of a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink in combination with DFEA, applicable in digital light processing-based additive manufacturing towards bone tissue regeneration. The fabricated hydrogel constructs show excellent shape fidelity in line with the printing resolution, as DFEA acts as a small molecular crosslinker in the system. The constructs exhibit high stiffness (E = 36.9 ± 4.1 kPa, evaluated via oscillatory rheology), suitable to serve bone regeneration and excellent MRI visualization capacity. Moreover, in combination with adipose tissue-derived stem cells (ASCs), the 3D-printed constructs show biocompatibility, and upon 4 weeks of culture, the ASCs express the osteogenic differentiation marker Ca2+.
19F magnetic resonance (19F MR) tracers stand out for their wide range of applications in experimental and clinical medicine, as they can be precisely located in living tissues with negligible fluorine background. This contribution demonstrates the long-term dissolution of multiresponsive fluorinated implants designed for prolonged release. Implants were detected for 14 (intramuscular injection) and 20 (subcutaneous injection) months by 19F MR at 4.7 T, showing favorable MR relaxation times, biochemical stability, biological compatibility and slow, long-term dissolution. Thus, polymeric implants may become a platform for long-term local theranostics.
- Publication type
- Journal Article MeSH
Diagnostics is an important part of medical practice. The information required for diagnosis is typically collected by performing diagnostic tests, some of which include imaging. Magnetic resonance imaging (MRI) is one of the most widely used and effective imaging techniques. To improve the sensitivity and specificity of MRI, contrast agents are used. In this review, the usage of metal-organic frameworks (MOFs) and composite materials based on them as contrast agents for MRI is discussed. MOFs are crystalline porous coordination polymers. Due to their huge design variety and high density of metal ions, they have been studied as a highly promising class of materials for developing MRI contrast agents. This review highlights the most important studies and focuses on the progress of the field over the last five years. The materials are classified based on their design and structural properties into three groups: MRI-active MOFs, composite materials based on MOFs, and MRI-active compounds loaded in MOFs. Moreover, an overview of MOF-based materials for heteronuclear MRI including 129Xe and 19F MRI is given.
- Keywords
- magnetic resonance imaging, metal−organic frameworks, multimodal imaging, nanomedicine, theranostics,
- MeSH
- Ions MeSH
- Contrast Media chemistry MeSH
- Metals chemistry MeSH
- Magnetic Resonance Imaging MeSH
- Metal-Organic Frameworks * chemistry MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Ions MeSH
- Contrast Media MeSH
- Metals MeSH
- Metal-Organic Frameworks * MeSH
19F magnetic resonance imaging (MRI) using fluoropolymer tracers has recently emerged as a promising, non-invasive diagnostic tool in modern medicine. However, despite its potential, 19F MRI remains overlooked and underused due to the limited availability or unfavorable properties of fluorinated tracers. Herein, we report a straightforward synthetic route to highly fluorinated 19F MRI nanotracers via aqueous dispersion polymerization-induced self-assembly of a water-soluble fluorinated monomer. A polyethylene glycol-based macromolecular chain-transfer agent was extended by RAFT-mediated N-(2,2,2-trifluoroethyl)acrylamide (TFEAM) polymerization in water, providing fluorine-rich self-assembled nanoparticles in a single step. The resulting nanoparticles had different morphologies and sizes ranging from 60 to 220 nm. After optimizing their structure to maximize the magnetic relaxation of the fluorinated core, we obtained a strong 19F NMR/MRI signal in an aqueous environment. Their non-toxicity was confirmed on primary human dermal fibroblasts. Moreover, we visualized the nanoparticles by 19F MRI, both in vitro (in aqueous phantoms) and in vivo (after subcutaneous injection in mice), thus confirming their biomedical potential.
- MeSH
- Acrylamide MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Mice MeSH
- Nanoparticles * chemistry MeSH
- Polymerization MeSH
- Water * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acrylamide MeSH
- Water * MeSH
Fluorine-19 MRI is a promising noninvasive diagnostic method. However, the absence of a nontoxic fluorine-19 MRI tracer that does not suffer from poor biodistribution as a result of its strong fluorophilicity is a constant hurdle in the widespread applicability of this otherwise versatile diagnostic technique. The poly[N-(2-hydroxypropyl)methacrylamide]-block-poly[N-(2,2-difluoroethyl)acrylamide] thermoresponsive copolymer was proposed as an alternative fluorine-19 MRI tracer capable of overcoming such shortcomings. In this paper, the internal structure of self-assembled particles of this copolymer was investigated by various methods including 1D and 2D NMR, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The elucidated structure appears to be that of a nanogel with greatly swollen hydrophilic chains and tightly packed thermoresponsive chains forming a network within the nanogel particles, which become more hydrophobic with increasing temperature. Its capacity to provide a measurable fluorine-19 NMR signal in its aggregated state at human body temperature was also investigated and confirmed. This capacity stems from the different fluorine-19 nuclei relaxation properties compared to those of hydrogen-1 nuclei.
- Keywords
- PDFEA, PHPMA, diblock copolymer, fluorine-19, magnetic resonance imaging, self-assembly,
- Publication type
- Journal Article MeSH