Most cited article - PubMed ID 30655565
High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate
Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.
- Keywords
- acidic chitinase (Chia), amino acid substitutions, chitin, enzyme engineering, evolution, exon swapping, hyperactivation, primate lineage, treating pulmonary diseases,
- MeSH
- Chitin metabolism MeSH
- Chitinases * genetics metabolism chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Humans MeSH
- Mice MeSH
- Enzyme Stability MeSH
- Amino Acid Substitution MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CHIA protein, human MeSH Browser
- Chitin MeSH
- Chitinases * MeSH
Placental mammals' ancestors were insectivores, suggesting that modern mammals may have inherited the ability to digest insects. Acidic chitinase (Chia) is a crucial enzyme hydrolyzing significant component of insects' exoskeleton in many species. On the other hand, herbivorous animal groups, such as cattle, have extremely low chitinase activity compared to omnivorous species, e.g., mice. The low activity of cattle Chia has been attributed to R128H mutation. The presence of either of these amino acids correlates with the feeding behavior of different bovid species with R and H determining the high and low enzymatic activity, respectively. Evolutionary analysis indicated that selective constraints were relaxed in 67 herbivorous Chia in Cetartiodactyla. Despite searching for another Chia paralog that could compensate for the reduced chitinase activity, no active paralogs were found in this order. Herbivorous animals' Chia underwent genetic alterations and evolved into a molecule with low activity due to the chitin-free diet.
- Keywords
- Evolutionary biology, Molecular biology, Zoology,
- Publication type
- Journal Article MeSH
Chitooligosaccharides, the degradation products of chitin and chitosan, possess anti-bacterial, anti-tumor, and anti-inflammatory activities. The enzymatic production of chitooligosaccharides may increase the interest in their potential biomedical or agricultural usability in terms of the safety and simplicity of the manufacturing process. Crab-eating monkey acidic chitinase (CHIA) is an enzyme with robust activity in various environments. Here, we report the efficient degradation of chitin and chitosan by monkey CHIA under acidic and high-temperature conditions. Monkey CHIA hydrolyzed α-chitin at 50 °C, producing N-acetyl-d-glucosamine (GlcNAc) dimers more efficiently than at 37 °C. Moreover, the degradation rate increased with a longer incubation time (up to 72 h) without the inactivation of the enzyme. Five substrates (α-chitin, colloidal chitin, P-chitin, block-type, and random-type chitosan substrates) were exposed to monkey CHIS at pH 2.0 or pH 5.0 at 50 °C. P-chitin and random-type chitosan appeared to be the best sources of GlcNAc dimers and broad-scale chitooligosaccharides, respectively. In addition, the pattern of the products from the block-type chitosan was different between pH conditions (pH 2.0 and pH 5.0). Thus, monkey CHIA can degrade chitin and chitosan efficiently without inactivation under high-temperature or low pH conditions. Our results show that certain chitooligosaccharides are enriched by using different substrates under different conditions. Therefore, the reaction conditions can be adjusted to obtain desired oligomers. Crab-eating monkey CHIA can potentially become an efficient tool in producing chitooligosaccharide sets for agricultural and biomedical purposes.
- Keywords
- FACE method, acidic chitinase, chitin, chitooligosaccharides, chitosan,
- MeSH
- Chitin * chemistry metabolism analogs & derivatives MeSH
- Chitinases * metabolism chemistry MeSH
- Chitosan * chemistry MeSH
- Hydrolysis MeSH
- Hydrogen-Ion Concentration MeSH
- Oligosaccharides * chemistry MeSH
- Substrate Specificity MeSH
- Hot Temperature MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chitin * MeSH
- Chitinases * MeSH
- Chitosan * MeSH
- oligochitosan MeSH Browser
- Oligosaccharides * MeSH
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.
- Keywords
- Chia, acidic chitinase, carnivores, digestive enzyme, gene loss, insectivores,
- MeSH
- Carnivora * metabolism MeSH
- Chitin chemistry metabolism MeSH
- Chitinases * genetics metabolism MeSH
- Diet MeSH
- Mice MeSH
- Dogs MeSH
- Amino Acid Sequence MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chitin MeSH
- Chitinases * MeSH
Chitooligosaccharides exhibit several biomedical activities, such as inflammation and tumorigenesis reduction in mammals. The mechanism of the chitooligosaccharides' formation in vivo has been, however, poorly understood. Here we report that mouse acidic chitinase (Chia), which is widely expressed in mouse tissues, can produce chitooligosaccharides from deacetylated chitin (chitosan) at pH levels corresponding to stomach and lung tissues. Chia degraded chitin to produce N-acetyl-d-glucosamine (GlcNAc) dimers. The block-type chitosan (heterogenous deacetylation) is soluble at pH 2.0 (optimal condition for mouse Chia) and was degraded into chitooligosaccharides with various sizes ranging from di- to nonamers. The random-type chitosan (homogenous deacetylation) is soluble in water that enables us to examine its degradation at pH 2.0, 5.0, and 7.0. Incubation of these substrates with Chia resulted in the more efficient production of chitooligosaccharides with more variable sizes was from random-type chitosan than from the block-type form of the molecule. The data presented here indicate that Chia digests chitosan acquired by homogenous deacetylation of chitin in vitro and in vivo. The degradation products may then influence different physiological or pathological processes. Our results also suggest that bioactive chitooligosaccharides can be obtained conveniently using homogenously deacetylated chitosan and Chia for various biomedical applications.
- Keywords
- FACE method, acidic chitinase, block-type chitosan, chitin, chitooligosaccharides, random-type chitosan,
- MeSH
- Chitinases chemistry metabolism MeSH
- Chitosan chemistry metabolism MeSH
- X-Ray Diffraction MeSH
- Hydrolysis MeSH
- Hydrogen-Ion Concentration * MeSH
- Mice MeSH
- Oligosaccharides chemistry metabolism MeSH
- Organ Specificity MeSH
- Lung metabolism MeSH
- Substrate Specificity MeSH
- Stomach metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chitinases MeSH
- Chitosan MeSH
- oligochitosan MeSH Browser
- Oligosaccharides MeSH
Diet of the crab-eating monkey (Macaca fascicularis) consists of both plants and animals, including chitin-containing organisms such as crabs and insects. This omnivorous monkey has a high expression of acidic chitinase (CHIA) in the stomach and here, we report on its enzymatic properties under different conditions. When we compared with Mus musculus CHIA (Mm-CHIA), Macaca fascicularis CHIA (Mf-CHIA) exhibits higher chitinolytic activity at broad pH (1.0-7.0) and temperature (30-70 ℃) range. Interestingly, at its optimum pH (5.0), Mf-CHIA showed the highest activity at 65 °C while maintaining it at robust levels between 50 and 70 °C. The degradation efficiency of Mf-CHIA was superior to Mm-CHIA toward both polymeric chitin as well as an artificial chromogenic substrate. Our results show that unique features of Mf-CHIA including its thermostability warrant the nomination of this enzyme for potential agricultural and biomedical applications.
- MeSH
- Chitin chemistry MeSH
- Chitinases chemistry MeSH
- Escherichia coli MeSH
- Hydrogen-Ion Concentration MeSH
- Macaca fascicularis MeSH
- Mice MeSH
- Oligosaccharides chemistry MeSH
- Polymers chemistry MeSH
- Polysaccharides chemistry MeSH
- Recombinant Proteins chemistry MeSH
- Carbohydrates chemistry MeSH
- Temperature MeSH
- Stomach metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chitin MeSH
- Chitinases MeSH
- Oligosaccharides MeSH
- Polymers MeSH
- Polysaccharides MeSH
- Recombinant Proteins MeSH
- Carbohydrates MeSH
Commercially available porcine pepsin preparations have been used for the production of chitooligosaccharides with various biomedical activities. However, the origin of this activity is not well understood. Here we show that the chitosan-degrading activity is conferred by residues with chitinolytic activity of truncated forms of acidic chitinase (Chia) persisting in the pepsin preparation. Chia is an acid-stable and pepsin-resistant enzyme that degrades chitin to produce N-acetyl-D-glucosamine dimer. We found that Chia can be truncated by pepsin under stomach-like conditions while maintaining its enzymatic activity. Similarly to the full-length protein, truncated Chia as well as the pepsin preparations digested chitosan with different degrees of deacetylation (DD: 69-84%) with comparable degradation products. The efficiency was DD-dependent with a marked decrease with higher DD, indicating that the chitosan-degrading activity in the pepsin preparation is due to the chitinolytic activity rather than chitosanolytic activity. We suggest that natural or recombinant porcine Chia are suitable for producing chitooligosaccharides for biomedical purposes.
- MeSH
- Chitinases metabolism MeSH
- Chitosan metabolism MeSH
- Hydrolysis MeSH
- Hydrogen-Ion Concentration MeSH
- Pepsin A metabolism MeSH
- Swine MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chitinases MeSH
- Chitosan MeSH
- Pepsin A MeSH