Nejvíce citovaný článek - PubMed ID 30740458
In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
- Klíčová slova
- Complex endosymbiosis, Plastid replacement, Reductive evolution,
- MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- plastidy genetika metabolismus MeSH
- Rhodophyta * genetika MeSH
- rostliny genetika MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic pathway is lost, due to something other than the original beneficial function. The organellar function essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of metabolic functions between the organelle and host. Such biological division of metabolic labor leads to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained because it simply resists being eliminated or digested untill it becomes indispensable.
- Klíčová slova
- benefit, endosymbiosis, essential function, mitochondrion, organelle, plastid,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Photosynthesis is a biochemical process essential for life, serving as the ultimate source of chemical energy for phototrophic and heterotrophic life forms. Since the machinery of the photosynthetic electron transport chain is quite complex and is unlikely to have evolved multiple independent times, it is believed that this machinery has been transferred to diverse eukaryotic organisms by endosymbiotic events involving a eukaryotic host and a phototrophic endosymbiont. Thus, photoautotrophy, as a benefit, is transmitted through the evolution of plastids. However, many eukaryotes became secondarily heterotrophic, reverting to hetero-osmotrophy, phagotrophy, or parasitism. Here, I briefly review the constructive evolution of plastid endosymbioses and the consequential switch to reductive evolution involving losses of photosynthesis and plastids and the evolution of parasitism from a photosynthetic ancestor.
- Klíčová slova
- endosymbiosis, evolution, parasitism, phagotrophy, photosynthesis, plastid, secondary heterotrophy,
- MeSH
- Chlorophyta * metabolismus mikrobiologie MeSH
- heterotrofní procesy MeSH
- symbióza * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Endosymbioses necessitate functional cooperation of cellular compartments to avoid pathway redundancy and streamline the control of biological processes. To gain insight into the metabolic compartmentation in chromerids, phototrophic relatives to apicomplexan parasites, we prepared a reference set of proteins probably localized to mitochondria, cytosol, and the plastid, taking advantage of available genomic and transcriptomic data. Training of prediction algorithms with the reference set now allows a genome-wide analysis of protein localization in Chromera velia and Vitrella brassicaformis. We confirm that the chromerid plastids house enzymatic pathways needed for their maintenance and photosynthetic activity, but for carbon and nitrogen allocation, metabolite exchange is necessary with the cytosol and mitochondria. This indeed suggests that the regulatory mechanisms operate in the cytosol to control carbon metabolism based on the availability of both light and nutrients. We discuss that this arrangement is largely shared with apicomplexans and dinoflagellates, possibly stemming from a common ancestral metabolic architecture, and supports the mixotrophy of the chromerid algae.
- Klíčová slova
- chromerid, endosymbiosis, mixotrophy, plastid integration, prediction algorithm, protein localization,
- MeSH
- algoritmy MeSH
- Alveolata metabolismus MeSH
- cytosol metabolismus MeSH
- dusík metabolismus MeSH
- fotosyntéza genetika fyziologie MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- symbióza genetika fyziologie MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- uhlík MeSH
Mitochondria and plastids evolved from free-living bacteria, but are now considered integral parts of the eukaryotic species in which they live. Therefore, they are implicitly called by the same eukaryotic species name. Historically, mitochondria and plastids were known as "organelles", even before their bacterial origin became fully established. However, since organelle evolution by endosymbiosis has become an established theory in biology, more and more endosymbiotic systems have been discovered that show various levels of host/symbiont integration. In this context, the distinction between "host/symbiont" and "eukaryote/organelle" systems is currently unclear. The criteria that are commonly considered are genetic integration (via gene transfer from the endosymbiont to the nucleus), cellular integration (synchronization of the cell cycles), and metabolic integration (the mutual dependency of the metabolisms). Here, I suggest that these criteria should be evaluated according to the resulting coupling of genetic recombination between individuals and congruence of effective population sizes, which determines if independent speciation is possible for either of the partners. I would like to call this aspect of integration "sexual symbiont integration". If the partners lose their independence in speciation, I think that they should be considered one species. The partner who maintains its genetic recombination mechanisms and life cycle should then be the name giving "host"; the other one would be the organelle. Distinguishing between organelles and symbionts according to their sexual symbiont integration is independent of any particular mechanism or structural property of the endosymbiont/host system under investigation.
- Klíčová slova
- chloroplast, endocytobiosis, eukaryogenesis, evolution, organelle, speciation, symbiogenesis,
- Publikační typ
- časopisecké články MeSH