Most cited article - PubMed ID 30816146
Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes
BACKGROUND/OBJECTIVES: Arachnids are a megadiverse arthropod group. The present study investigated the chromosomes of pedipalpid tetrapulmonates (orders Amblypygi, Thelyphonida, Schizomida) and two arachnid orders of uncertain phylogenetic placement, Ricinulei and Solifugae, to reconstruct their karyotype evolution. Except for amblypygids, the cytogenetics of these arachnid orders was almost unknown prior to the present study. METHODS: Chromosomes were investigated using methods of standard (Giemsa-stained preparations, banding techniques) and molecular cytogenetics (fluorescence in situ hybridization, comparative genomic hybridization). RESULTS AND CONCLUSIONS: New data for 38 species, combined with previously published data, suggest that ancestral arachnids possessed low to moderate 2n (22-40), monocentric chromosomes, one nucleolus organizer region (NOR), low levels of heterochromatin and recombinations, and no or homomorphic sex chromosomes. Karyotypes of Pedipalpi and Solifugae diversified via centric fusions, pericentric inversions, and changes in the pattern of NORs and, in solifuges, also through tandem fusions. Some solifuges display an enormous amount of constitutive heterochromatin and high NOR number. It is hypothesized that the common ancestor of amblypygids, thelyphonids, and spiders exhibited a homomorphic XY system, and that telomeric heterochromatin and NORs were involved in the evolution of amblypygid sex chromosomes. The new findings support the Cephalosomata clade (acariforms, palpigrades, and solifuges). Hypotheses concerning the origin of acariform holocentric chromosomes are presented. Unlike current phylogenetic hypotheses, the results suggest a sister relationship between Schizomida and a clade comprising other tetrapulmonates as well as a polyploidization in the common ancestor of the clade comprising Araneae, Amblypygi, and Thelyphonida.
- Keywords
- Ricinulei, heterochromatin, holocentric, nucleolus organizer region, polyploidy, sex chromosome, solifuge, somatic pairing, spider, telomere,
- MeSH
- Phylogeny MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotype * MeSH
- Karyotyping MeSH
- Evolution, Molecular * MeSH
- Arachnida * genetics classification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Spiders are a hyperdiverse taxon and among the most abundant predators in nearly all terrestrial habitats. Their success is often attributed to key developments in their evolution such as silk and venom production and major apomorphies such as a whole-genome duplication. Resolving deep relationships within the spider tree of life has been historically challenging, making it difficult to measure the relative importance of these novelties for spider evolution. Whole-genome data offer an essential resource in these efforts, but also for functional genomic studies. Here, we present de novo assemblies for three spider species: Ryuthela nishihirai (Liphistiidae), a representative of the ancient Mesothelae, the suborder that is sister to all other extant spiders; Uloborus plumipes (Uloboridae), a cribellate orbweaver whose phylogenetic placement is especially challenging; and Cheiracanthium punctorium (Cheiracanthiidae), which represents only the second family to be sequenced in the hyperdiverse Dionycha clade. These genomes fill critical gaps in the spider tree of life. Using these novel genomes along with 25 previously published ones, we examine the evolutionary history of spidroin gene and structural hox cluster diversity. Our assemblies provide critical genomic resources to facilitate deeper investigations into spider evolution. The near chromosome-level genome of the 'living fossil' R. nishihirai represents an especially important step forward, offering new insights into the origins of spider traits.
- Keywords
- Hi‐C, Mesothelae, assembly, chromosome, karyotype, spider silk,
- MeSH
- Phylogeny * MeSH
- Genome genetics MeSH
- Silk genetics MeSH
- Animals, Poisonous MeSH
- Spiders * genetics classification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Silk MeSH
Haplogyne araneomorphs are a diverse spider clade. Their karyotypes are usually predominated by biarmed (i.e., metacentric and submetacentric) chromosomes and have a specific sex chromosome system, X1X2Y. These features are probably ancestral for haplogynes. Nucleolus organizer regions (NORs) spread frequently from autosomes to sex chromosomes in these spiders. This study focuses on pholcids (Pholcidae), a highly diverse haplogyne family. Despite considerable recent progress in pholcid cytogenetics, knowledge on many clades remains insufficient including the most species-rich pholcid genus, Pholcus Walckenaer, 1805. To characterize the karyotype differentiation of Pholcus in Europe, we compared karyotypes, sex chromosomes, NORs, and male meiosis of seven species [P.alticeps Spassky, 1932; P.creticus Senglet, 1971; P.dentatus Wunderlich, 1995; P.fuerteventurensis Wunderlich, 1992; P.phalangioides (Fuesslin, 1775); P.opilionoides (Schrank, 1781); P.silvai Wunderlich, 1995] representing the dominant species groups in this region. The species studied show several features ancestral for Pholcus, namely the 2n♂ = 25, the X1X2Y system, and a karyotype predominated by biarmed chromosomes. Most taxa have a large acrocentric NOR-bearing pair, which evolved from a biarmed pair by a pericentric inversion. In some lineages, the acrocentric pair reverted to biarmed. Closely related species often differ in the morphology of some chromosome pairs, probably resulting from pericentric inversions and/or translocations. Such rearrangements have been implicated in the formation of reproductive barriers. While the X1 and Y chromosomes retain their ancestral metacentric morphology, the X2 chromosome shows a derived (acrocentric or subtelocentric) morphology. Pairing of this element is usually modified during male meiosis. NOR patterns are very diverse. The ancestral karyotype of Pholcus contained five or six terminal NORs including three X chromosome-linked loci. The number of NORs has been frequently reduced during evolution. In the Macaronesian clade, there is only a single NOR-bearing pair. Sex chromosome-linked NORs are lost in Madeiran species and in P.creticus. Our study revealed two cytotypes in the synanthropic species P.phalangioides (Madeiran and Czech), which differ by their NOR pattern and chromosome morphology. In the Czech cytotype, the large acrocentric pair was transformed into a biarmed pair by pericentric inversion.
- Keywords
- NOR, Synspermiata, haplogyne, inversion, rDNA, sex chromosome, speciation,
- Publication type
- Journal Article MeSH
Whip spiders (Amblypygi) represent an ancient order of tetrapulmonate arachnids with a low diversity. Their cytogenetic data are confined to only a few reports. Here, we analyzed the family Charinidae, a lineage almost at the base of the amblypygids, providing an insight into the ancestral traits and basic trajectories of amblypygid karyotype evolution. We performed Giemsa staining, selected banding techniques, and detected 18S ribosomal DNA and telomeric repeats by fluorescence in situ hybridization in four Charinus and five Sarax species. Both genera exhibit a wide range of diploid chromosome numbers (2n = 42-76 and 22-74 for Charinus and Sarax, respectively). The 2n reduction was accompanied by an increase of proportion of biarmed elements. We further revealed a single NOR site (probably an ancestral condition for charinids), the presence of a (TTAGG)n telomeric motif localized mostly at the chromosome ends, and an absence of heteromorphic sex chromosomes. Our data collectively suggest a high pace of karyotype repatterning in amblypygids, with probably a high ancestral 2n and its subsequent gradual reduction by fusions, and the action of pericentric inversions, similarly to what has been proposed for neoamblypygids. The possible contribution of fissions to charinid karyotype repatterning, however, cannot be fully ruled out.
- Keywords
- Charinus, Sarax, chromosome fusion, fluorescence in situ hybridization, heterochromatin, nucleolar organizer region, telomere,
- Publication type
- Journal Article MeSH
BACKGROUND: Despite progress in genomic analysis of spiders, their chromosome evolution is not satisfactorily understood. Most information on spider chromosomes concerns the most diversified clade, entelegyne araneomorphs. Other clades are far less studied. Our study focused on haplogyne araneomorphs, which are remarkable for their unusual sex chromosome systems and for the co-evolution of sex chromosomes and nucleolus organizer regions (NORs); some haplogynes exhibit holokinetic chromosomes. To trace the karyotype evolution of haplogynes on the family level, we analysed the number and morphology of chromosomes, sex chromosomes, NORs, and meiosis in pholcids, which are among the most diverse haplogyne families. The evolution of spider NORs is largely unknown. RESULTS: Our study is based on an extensive set of species representing all major pholcid clades. Pholcids exhibit a low 2n and predominance of biarmed chromosomes, which are typical haplogyne features. Sex chromosomes and NOR patterns of pholcids are diversified. We revealed six sex chromosome systems in pholcids (X0, XY, X1X20, X1X2X30, X1X2Y, and X1X2X3X4Y). The number of NOR loci ranges from one to nine. In some clades, NORs are also found on sex chromosomes. CONCLUSIONS: The evolution of cytogenetic characters was largely derived from character mapping on a recently published molecular phylogeny of the family. Based on an extensive set of species and mapping of their characters, numerous conclusions regarding the karyotype evolution of pholcids and spiders can be drawn. Our results suggest frequent autosome-autosome and autosome-sex chromosome rearrangements during pholcid evolution. Such events have previously been attributed to the reproductive isolation of species. The peculiar X1X2Y system is probably ancestral for haplogynes. Chromosomes of the X1X2Y system differ considerably in their pattern of evolution. In some pholcid clades, the X1X2Y system has transformed into the X1X20 or XY systems, and subsequently into the X0 system. The X1X2X30 system of Smeringopus pallidus probably arose from the X1X20 system by an X chromosome fission. The X1X2X3X4Y system of Kambiwa probably evolved from the X1X2Y system by integration of a chromosome pair. Nucleolus organizer regions have frequently expanded on sex chromosomes, most probably by ectopic recombination. Our data suggest the involvement of sex chromosome-linked NORs in achiasmatic pairing.
- Keywords
- Achiasmatic pairing, Diffuse stage, Entelegyne, Haplogyne, Inactivation, Rearrangement, Segregation, Y chromosome, rDNA,
- MeSH
- Karyotype MeSH
- Karyotyping MeSH
- Meiosis genetics MeSH
- Spiders * genetics MeSH
- Sex Chromosomes genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND AND AIMS: Ultraviolet-B radiation (UV-B) radiation damages the DNA, cells and photosynthetic apparatus of plants. Plants commonly prevent this damage by synthetizing UV-B-protective compounds. Recent laboratory experiments in Arabidopsis and cucumber have indicated that plants can also respond to UV-B stress with endopolyploidy. Here we test the generality of this response in natural plant populations, considering their monocentric or holocentric chromosomal structure. METHODS: We measured the endopolyploidy index (flow cytometry) and the concentration of UV-B-protective compounds in leaves of 12 herbaceous species (1007 individuals) from forest interiors and neighbouring clearings where they were exposed to increased UV-B radiation (103 forest + clearing populations). We then analysed the data using phylogenetic mixed models. KEY RESULTS: The concentration of UV-B protectives increased with UV-B doses estimated from hemispheric photographs of the sky above sample collection sites, but the increase was more rapid in species with monocentric chromosomes. Endopolyploidy index increased with UV-B doses and with concentrations of UV-B-absorbing compounds only in species with monocentric chromosomes, while holocentric species responded negligibly. CONCLUSIONS: Endopolyploidy seems to be a common response to increased UV-B in monocentric plants. Low sensitivity to UV-B in holocentric species might relate to their success in high-UV-stressed habitats and corroborates the hypothesized role of holocentric chromosomes in plant terrestrialization.
- Keywords
- Endopolyploidy, UV-B-absorbing compounds, endoreduplication index, flow cytometry, holocentric chromosomes, monocentric chromosomes, natural population, ultraviolet radiation,
- MeSH
- Arabidopsis * MeSH
- Chromosomes * MeSH
- Phylogeny MeSH
- Humans MeSH
- Plant Leaves MeSH
- Ultraviolet Rays MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Spiders are an intriguing model to analyse sex chromosome evolution because of their peculiar multiple X chromosome systems. Y chromosomes were considered rare in this group, arising after neo-sex chromosome formation by X chromosome-autosome rearrangements. However, recent findings suggest that Y chromosomes are more common in spiders than previously thought. Besides neo-sex chromosomes, they are also involved in the ancient X1X2Y system of haplogyne spiders, whose origin is unknown. Furthermore, spiders seem to exhibit obligatorily one or two pairs of cryptic homomorphic XY chromosomes (further cryptic sex chromosome pairs, CSCPs), which could represent the ancestral spider sex chromosomes. Here, we analyse the molecular differentiation of particular types of spider Y chromosomes in a representative set of ten species by comparative genomic hybridisation (CGH). We found a high Y chromosome differentiation in haplogyne species with X1X2Y system except for Loxosceles spp. CSCP chromosomes exhibited generally low differentiation. Possible mechanisms and factors behind the observed patterns are discussed. The presence of autosomal regions marked predominantly or exclusively with the male or female probe was also recorded. We attribute this pattern to intraspecific variability in the copy number and distribution of certain repetitive DNAs in spider genomes, pointing thus to the limits of CGH in this arachnid group. In addition, we confirmed nonrandom association of chromosomes belonging to particular CSCPs at spermatogonial mitosis and spermatocyte meiosis and their association with multiple Xs throughout meiosis. Taken together, our data suggest diverse evolutionary pathways of molecular differentiation in different types of spider Y chromosomes.
- Keywords
- Arthropoda, X1X20, X1X2Y, Y chromosome, achiasmatic pairing, in situ hybridisation, karyotype evolution, male-specific region, neo-sex chromosome, repetitive DNA,
- MeSH
- Biological Evolution * MeSH
- Genome * MeSH
- Karyotype MeSH
- Meiosis * MeSH
- Spiders genetics MeSH
- Sex Chromosomes genetics MeSH
- Sex Differentiation * MeSH
- Comparative Genomic Hybridization methods MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.
- Keywords
- CENH3, CENP-A, Cuscuta, Lathyrus, Luzula, Pisum, Rhynchospora, clustered centromere, holocentromere, microtubule, monocentromere, structured illumination microscopy,
- MeSH
- Cell Cycle MeSH
- Centromere metabolism MeSH
- Chromosomes, Plant metabolism MeSH
- Microscopy * MeSH
- Evolution, Molecular MeSH
- Plants metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Spiders represent one of the most studied arachnid orders. They are particularly intriguing from a cytogenetic point of view, due to their complex and dynamic sex chromosome determination systems. Despite intensive research on this group, cytogenetic data from African spiders are still mostly lacking. In this study, we describe the karyotypes of 38 species of spiders belonging to 16 entelegyne families from South Africa and Namibia. In the majority of analysed families, the observed chromosome numbers and morphology (mainly acrocentric) did not deviate from the family-level cytogenetic characteristics based on material from other continents: Tetragnathidae (2n♂ = 24), Ctenidae and Oxyopidae (2n♂ = 28), Sparassidae (2n♂ = 42), Gnaphosidae, Trachelidae and Trochanteriidae (2n♂ = 22), and Salticidae (2n♂ = 28). On the other hand, we identified interspecific variability within Hersiliidae (2n♂ = 33 and 35), Oecobiidae (2n♂ = 19 and 25), Selenopidae (2n♂ = 26 and 29) and Theridiidae (2n♂ = 21 and 22). We examined the karyotypes of Ammoxenidae and Gallieniellidae for the first time. Their diploid counts (2n♂ = 22) correspond to the superfamily Gnaphosoidea and support their placement in this lineage. On the other hand, the karyotypes of Prodidominae (2n♂ = 28 and 29) contrast with all other Gnaphosoidea. Similarly, the unusually high diploid number in Borboropactus sp. (2n♂ = 28) within the otherwise cytogenetically uniform family Thomisidae (mainly 2n♂ = 21-24) supports molecular data suggesting a basal position of the genus in the family. The implementation of FISH methods for visualisation of rDNA clusters facilitated the detection of complex dynamics of numbers of these loci. We identified up to five loci of the 18S rDNA clusters in our samples. Three different sex chromosome systems (X0, X1X20 and X1X2X30) were also detected among the studied taxa.
- Keywords
- Araneoidea, Gnaphosoidea, Oecobioidea, Karyotype, NOR, RTA clade, acrocentric, meiosis, rDNA FISH, sex chromosomes,
- Publication type
- Journal Article MeSH