Nejvíce citovaný článek - PubMed ID 31278192
Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington's disease
Purpose: Retinal ischemia (RI) and progressive neuronal death are sight-threatening conditions. Mitochondrial (mt) dysfunction and fusion/fission processes have been suggested to play a role in the pathophysiology of RI. This study focuses on changes in the mt parameters of the neuroretina, retinal pigment epithelium (RPE) and choroid in a porcine high intraocular pressure (IOP)-induced RI minipig model. Methods: In one eye, an acute IOP elevation was induced in minipigs and compared to the other control eye. Activity and amount of respiratory chain complexes (RCC) were analyzed by spectrophotometry and Western blot, respectively. The coenzyme Q10 (CoQ10) content was measured using HPLC, and the ultrastructure of the mt was studied via transmission electron microscopy. The expression of selected mt-pathway genes was determined by RT-PCR. Results: At a functional level, increased RCC I activity and decreased total CoQ10 content were found in RPE cells. At a protein level, CORE2, a subunit of RCC III, and DRP1, was significantly decreased in the neuroretina. Drp1 and Opa1, protein-encoding genes responsible for mt quality control, were decreased in most of the samples from the RPE and neuroretina. Conclusions: The eyes of the minipig can be considered a potential RI model to study mt dysfunction in this disease. Strategies targeting mt protection may provide a promising way to delay the acute damage and onset of RI.
- Klíčová slova
- coenzyme Q10, minipig, mitochondrial dysfunction, retinal ischemia,
- MeSH
- glaukom * metabolismus MeSH
- ischemie metabolismus MeSH
- karcinom z renálních buněk * metabolismus MeSH
- miniaturní prasata MeSH
- mitochondrie metabolismus MeSH
- nádory ledvin * metabolismus MeSH
- nitrooční tlak MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genetically modified rodent models of Huntington's disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.e. mouse disease models) may not be sufficient. Large animal models of HD have been shown to be valuable to the HD research community and the expectation is that the need for translational studies that span rodent and large animal models will grow. Here, we review the large animal models of HD that have been created to date, with specific commentary on differences between the models, the strengths and disadvantages of each, and how we can advance useful models to study disease pathophysiology, biomarker development and evaluation of promising therapeutics.
- Klíčová slova
- Minipigs, nonhuman primates, sheep, therapeutics,
- MeSH
- geneticky modifikovaná zvířata * MeSH
- Huntingtonova nemoc * genetika patologie patofyziologie terapie MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech * MeSH
- ovce MeSH
- prasata MeSH
- primáti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Huntington's disease (HD) is an inherited devastating neurodegenerative disease with no known cure to date. Several therapeutic treatments for HD are in development, but their safety, tolerability and efficacy need to be tested before translation to bedside. The monogenetic nature of this disorder has enabled the generation of transgenic animal models carrying a mutant huntingtin (mHTT) gene causing HD. A large animal model reflecting disease progression in humans would be beneficial for testing the potential therapeutic approaches. Progression of the motor, cognitive and behavioral phenotype was monitored in transgenic Huntington's disease minipigs (TgHD) expressing the N-terminal part of human mHTT. New tests were established to investigate physical activity by telemetry, and to explore the stress-induced behavioral and cognitive changes in minipigs. The longitudinal study revealed significant differences between 6- to 8-year-old TgHD animals and their wild-type (WT) controls in a majority of the tests. The telemetric study showed increased physical activity of 4.6- to 6.5-year-old TgHD boars compared to their WT counterparts during the lunch period as well as in the afternoon. Our phenotypic study indicates progression in adult TgHD minipigs and therefore this model could be suitable for longstanding preclinical studies of HD.This article has an associated First Person interview with the first author of the paper.
- Klíčová slova
- Cognitive and behavioral studies, Huntington's disease, Large animal model, Motor, Phenotyping,
- MeSH
- chování zvířat fyziologie MeSH
- geneticky modifikovaná zvířata MeSH
- Huntingtonova nemoc komplikace patofyziologie MeSH
- jazyk MeSH
- kognice fyziologie MeSH
- kondiční příprava zvířat MeSH
- longitudinální studie MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech MeSH
- pohybová aktivita * MeSH
- prasata MeSH
- psychický stres komplikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recently developed therapeutic approaches for the treatment of Huntington's disease (HD) require preclinical testing in large animal models. The minipig is a suitable experimental animal because of its large gyrencephalic brain, body weight of 70-100 kg, long lifespan, and anatomical, physiological and metabolic resemblance to humans. The Libechov transgenic minipig model for HD (TgHD) has proven useful for proof of concept of developing new therapies. However, to evaluate the efficacy of different therapies on disease progression, a broader phenotypic characterization of the TgHD minipig is needed. In this study, we analyzed the brain tissues of TgHD minipigs at the age of 48 and 60-70 months, and compared them to wild-type animals. We were able to demonstrate not only an accumulation of different forms of mutant huntingtin (mHTT) in TgHD brain, but also pathological changes associated with cellular damage caused by mHTT. At 48 months, we detected pathological changes that included the demyelination of brain white matter, loss of function of striatal neurons in the putamen and activation of microglia. At 60-70 months, we found a clear marker of neurodegeneration: significant cell loss detected in the caudate nucleus, putamen and cortex. This was accompanied by clusters of structures accumulating in the neurites of some neurons, a sign of their degeneration that is also seen in Alzheimer's disease, and a significant activation of astrocytes. In summary, our data demonstrate age-dependent neuropathology with later onset of neurodegeneration in TgHD minipigs.
- Klíčová slova
- Brain, Huntingtin, Large animal model, Neuropathology, TgHD,
- MeSH
- bílá hmota patologie ultrastruktura MeSH
- biologické markery metabolismus MeSH
- degenerace nervu patologie MeSH
- geneticky modifikovaná zvířata MeSH
- genotyp MeSH
- hmotnostní úbytek MeSH
- Huntingtonova nemoc patologie MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech MeSH
- motorické korové centrum patologie ultrastruktura MeSH
- myelinová pochva metabolismus MeSH
- nucleus caudatus patologie ultrastruktura MeSH
- prasata MeSH
- protein huntingtin metabolismus MeSH
- proteinové agregáty MeSH
- stárnutí patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- Htt protein, mouse MeSH Prohlížeč
- protein huntingtin MeSH
- proteinové agregáty MeSH