Nejvíce citovaný článek - PubMed ID 31281299
Microbial natural products are among the main sources of compounds used in the medical biotechnology field for the purpose of drug development. However, as antibiotic resistance in pathogenic microorganisms is known to be increasing dramatically, there exists a need to develop new antibiotics. Actinomycetia have proven to be a good source of biologically active compounds, although the rediscovery of previously known compounds significantly slows down the introduction of new antibiotics. As a consequence, increasing attention is being paid to the isolation of actinomycete strains from previously unexplored sources, which can significantly increase the likelihood of discovering new biologically active compounds. This study investigated the diversity and bioactive potential of 372 actinomycete strains isolated from the rhizosphere soil of Juniperus excelsa M. Bieb. The examined actinomycete strains belonged to 11 genera, namely, Actinoplanes, Actinorectispora, Amycolatopsis, Kribbella, Micrococcus, Micromonospora, Nocardia, Promicromonospora, Rhodococcus, Saccharopolyspora and Streptomyces. The bioactive potential of each isolated actinomycete strain was determined on the basis of its ability to produce antimicrobial metabolites against Gram-positive and Gram-negative bacteria and yeast. Some 159 strains (42.74%) exhibited antimicrobial activity against at least one of the tested microbial strains. The dereplication analysis of the extract of the Streptomyces sp. Je 1-651 strain, which exhibited strong antimicrobial activity, led to the annotation of spiramycins and stambomycins. Moreover, the phylogenetic analysis based on the 16S rRNA gene sequence of the Je 1-651 strain revealed it to be close to the S. ambofaciens.
- Klíčová slova
- Actinomycetia, Bioactivity, Juniperus excelsa, Rhizosphere microorganisms, Spiramycins,
- MeSH
- Actinobacteria * MeSH
- Actinomycetales * genetika MeSH
- antibakteriální látky farmakologie metabolismus MeSH
- antiinfekční látky * MeSH
- fylogeneze MeSH
- gramnegativní bakterie genetika MeSH
- grampozitivní bakterie MeSH
- jalovec (rod) * genetika MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- rhizosféra MeSH
- RNA ribozomální 16S genetika MeSH
- Streptomyces * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky * MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
- Klíčová slova
- Biomaterial, CRISPR, Drug development, Morel cultivation, Mushroom cultivation, Mycotoxin biosynthesis, Plastic degradation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Current treatment of chronic diseases includes, among others, application of cytokines, monoclonal antibodies, cellular therapies, and immunostimulants. As all the underlying mechanisms of a particular diseases are not always fully clarified, treatment can be inefficient and associated with various, sometimes serious, side effects. Small secondary metabolites produced by various microbes represent an attractive alternative as future anti-inflammatory drug leads. Compared to current drugs, they are cheaper, can often be administered orally, but still can keep a high target-specificity. Some compounds produced by actinomycetes or fungi have already been used as immunomodulators-tacrolimus, sirolimus, and cyclosporine. This work documents strong anti-inflammatory features of another secondary metabolite of streptomycetes-manumycin-type polyketides. We compared the effect of four related compounds: manumycin A, manumycin B, asukamycin, and colabomycin E on activation and survival of human monocyte/macrophage cell line THP-1. The anti-cancer effect of manucycine A has been demonstrated; the immunomodulatory capacities of manumycin A are obvious when using micromolar concentrations. The application of all four compounds in 0.25-5 μM concentrations leads to efficient, concentration-dependent inhibition of IL-1β and TNF expression in THP-1 upon LPS stimulation, while the three latter compounds show a significantly lower pro-apoptotic effect than manumycin A. We have demonstrated the anti-inflammatory capacity of selected manumycin-type polyketides.
- Klíčová slova
- Streptomyces, immunomodulation, inflammation, manumycins, secondary metabolites,
- Publikační typ
- časopisecké články MeSH