Most cited article - PubMed ID 31932444
Anaerobic peroxisomes in Mastigamoeba balamuthi
Parasitic nematodes cause a wide range of diseases in animals, including humans. However, the efficacy of existing anthelmintic drugs, commonly used to treat these infections, is waning due to the increasing prevalence of drug resistance in nematode populations. This growing challenge underscores the urgent need to discover and develop novel nematocidal drugs that target new molecular pathways. In the present study, 13 novel derivatives of benzhydroxamic acid (OMKs) were designed and synthesized. Their anthelmintic activity was tested in the parasitic nematode Haemonchus contortus (barber's pole worm) and the free-living nematode Caenorhabditis elegans and potential toxicity assessed in mammalian models. Compound OMK211 showed the most promising results. It decreased viability and motility of larval and adult stages of both nematode species and of both drug-sensitive and drug-resistant strains of H. contortus at micromolar concentrations with the highest efficacy in H. contortus adult males (IC50 ∼ 1 μM). Moreover, OMK211 was not toxic in mammalians cells in vitro and in mice in vivo. Consequently, thermal proteome profiling analysis was used to infer the putative molecular target of OMK211 in H. contortus. The results revealed C2-domain containing protein A0A6F7Q0A8, encoded by gene HCON_00184,900, as an interacting partner of OMK211. Using advanced structural prediction and docking tools, this protein is considered an interesting putative molecular target of new nematocidal drugs as its orthologs are present in several nematodes but not in mammals. In conclusion, novel derivatives of benzhydroxamic acid represent a promising new class of potential anthelmintics, which deserve further testing.
- Keywords
- Drug development, Drug resistance, Nematodes, New anthelmintics,
- Publication type
- Journal Article MeSH
N-Methyl-d-aspartate receptors (NMDARs), encoded by GRIN genes, are ionotropic glutamate receptors playing a critical role in synaptic transmission, plasticity, and synapse development. Genome sequence analyses have identified variants in GRIN genes in patients with neurodevelopmental disorders, but the underlying disease mechanisms are not well understood. Here, we have created and evaluated a transgenic mouse line carrying a missense variant Grin2bL825V , corresponding to a de novo GRIN2B variant encoding GluN2B(L825V) found in a patient with intellectual disability (ID) and autism spectrum disorder (ASD). We used HEK293T cells expressing recombinant receptors and primary hippocampal neurons prepared from heterozygous Grin2bL825V/+ (L825V/+) and wild-type (WT) Grin2b+/+ (+/+) male and female mice to assess the functional impact of the variant. Whole-cell NMDAR currents were reduced in neurons from L825V/+ compared with +/+ mice. The peak amplitude of NMDAR-mediated evoked excitatory postsynaptic currents (NMDAR-eEPSCs) was unchanged, but NMDAR-eEPSCs in L825V/+ neurons had faster deactivation compared with +/+ neurons and were less sensitive to a GluN2B-selective antagonist ifenprodil. Together, these results suggest a decreased functional contribution of GluN2B subunits to synaptic NMDAR currents in hippocampal neurons from L825V/+ mice. The analysis of the GluN2B(L825V) subunit surface expression and synaptic localization revealed no differences compared with WT GluN2B. Behavioral testing of mice of both sexes demonstrated hypoactivity, anxiety, and impaired sensorimotor gating in the L825V/+ strain, particularly affecting males, as well as cognitive symptoms. The heterozygous L825V/+ mouse offers a clinically relevant model of GRIN2B-related ID/ASD, and our results suggest synaptic-level functional changes that may contribute to neurodevelopmental pathology.
- Keywords
- GluN2B, NMDA receptors, autism spectrum disorder, mouse model, synaptic transmission,
- MeSH
- Excitatory Postsynaptic Potentials physiology MeSH
- HEK293 Cells MeSH
- Hippocampus metabolism MeSH
- Humans MeSH
- Mutation, Missense MeSH
- Mice, Inbred C57BL MeSH
- Mice, Transgenic * MeSH
- Mice MeSH
- Neurons metabolism MeSH
- Neurodevelopmental Disorders * genetics physiopathology metabolism MeSH
- Receptors, N-Methyl-D-Aspartate * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- NR2B NMDA receptor MeSH Browser
- Receptors, N-Methyl-D-Aspartate * MeSH
The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.
- MeSH
- Eukaryota * genetics MeSH
- Phylogeny MeSH
- Genomics MeSH
- Mitochondria genetics MeSH
- Oxymonadida * genetics metabolism MeSH
- Publication type
- Journal Article MeSH
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
- Keywords
- LOPIT, Paratrimastix, glycine cleavage system, methionine cycle, mitochondrion-related organelle, one-carbon metabolism, proteome, spatial proteomics,
- MeSH
- Eukaryota metabolism MeSH
- Methionine * MeSH
- Mitochondria * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Methionine * MeSH
BACKGROUND: Mitochondria and peroxisomes are the two organelles that are most affected during adaptation to microoxic or anoxic environments. Mitochondria are known to transform into anaerobic mitochondria, hydrogenosomes, mitosomes, and various transition stages in between, collectively called mitochondrion-related organelles (MROs), which vary in enzymatic capacity. Anaerobic peroxisomes were identified only recently, and their putatively most conserved function seems to be the metabolism of inositol. The group Archamoebae includes anaerobes bearing both anaerobic peroxisomes and MROs, specifically hydrogenosomes in free-living Mastigamoeba balamuthi and mitosomes in the human pathogen Entamoeba histolytica, while the organelles within the third lineage represented by Pelomyxa remain uncharacterized. RESULTS: We generated high-quality genome and transcriptome drafts from Pelomyxa schiedti using single-cell omics. These data provided clear evidence for anaerobic derivates of mitochondria and peroxisomes in this species, and corresponding vesicles were tentatively identified in electron micrographs. In silico reconstructed MRO metabolism harbors respiratory complex II, electron-transferring flavoprotein, a partial TCA cycle running presumably in the reductive direction, pyruvate:ferredoxin oxidoreductase, [FeFe]-hydrogenases, a glycine cleavage system, a sulfate activation pathway, and an expanded set of NIF enzymes for iron-sulfur cluster assembly. When expressed in the heterologous system of yeast, some of these candidates localized into mitochondria, supporting their involvement in the MRO metabolism. The putative functions of P. schiedti peroxisomes could be pyridoxal 5'-phosphate biosynthesis, amino acid and carbohydrate metabolism, and hydrolase activities. Unexpectedly, out of 67 predicted peroxisomal enzymes, only four were also reported in M. balamuthi, namely peroxisomal processing peptidase, nudix hydrolase, inositol 2-dehydrogenase, and D-lactate dehydrogenase. Localizations in yeast corroborated peroxisomal functions of the latter two. CONCLUSIONS: This study revealed the presence and partially annotated the function of anaerobic derivates of mitochondria and peroxisomes in P. schiedti using single-cell genomics, localizations in yeast heterologous systems, and transmission electron microscopy. The MRO metabolism resembles that of M. balamuthi and most likely reflects the state in the common ancestor of Archamoebae. The peroxisomal metabolism is strikingly richer in P. schiedti. The presence of myo-inositol 2-dehydrogenase in the predicted peroxisomal proteome corroborates the situation in other Archamoebae, but future experimental evidence is needed to verify additional functions of this organelle.
- Keywords
- Anaerobic peroxisome, Anaerobiosis, FeS cluster assembly, Hydrogenosome, Mitochondrion-related organelle, Pelomyxa, Single-cell genomics,
- MeSH
- Amoeba * genetics metabolism MeSH
- Anaerobiosis MeSH
- Archamoebae * genetics metabolism MeSH
- Genomics MeSH
- Humans MeSH
- Mitochondria metabolism MeSH
- Peroxisomes metabolism MeSH
- Saccharomyces cerevisiae MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Entamoeba histolytica is believed to be devoid of peroxisomes, like most anaerobic protists. In this work, we provided the first evidence that peroxisomes are present in E. histolytica, although only seven proteins responsible for peroxisome biogenesis (peroxins) were identified (Pex1, Pex6, Pex5, Pex11, Pex14, Pex16, and Pex19). Targeting matrix proteins to peroxisomes is reduced to the PTS1-dependent pathway mediated via the soluble Pex5 receptor, while the PTS2 receptor Pex7 is absent. Immunofluorescence microscopy showed that peroxisomal markers (Pex5, Pex14, Pex16, Pex19) are present in vesicles distinct from mitosomes, the endoplasmic reticulum, and the endosome/phagosome system, except Pex11, which has dual localization in peroxisomes and mitosomes. Immunoelectron microscopy revealed that Pex14 localized to vesicles of approximately 90-100 nm in diameter. Proteomic analyses of affinity-purified peroxisomes and in silico PTS1 predictions provided datasets of 655 and 56 peroxisomal candidates, respectively; however, only six proteins were shared by both datasets, including myo-inositol dehydrogenase (myo-IDH). Peroxisomal NAD-dependent myo-IDH appeared to be a dimeric enzyme with high affinity to myo-inositol (Km 0.044 mM) and can utilize also scyllo-inositol, D-glucose and D-xylose as substrates. Phylogenetic analyses revealed that orthologs of myo-IDH with PTS1 are present in E. dispar, E. nutalli and E. moshkovskii but not in E. invadens, and form a monophyletic clade of mostly peroxisomal orthologs with free-living Mastigamoeba balamuthi and Pelomyxa schiedti. The presence of peroxisomes in E. histolytica and other archamoebae breaks the paradigm of peroxisome absence in anaerobes and provides a new potential target for the development of antiparasitic drugs.
- MeSH
- Anaerobiosis MeSH
- Entamoeba histolytica metabolism MeSH
- Phylogeny MeSH
- Inositol metabolism MeSH
- Mutation * MeSH
- Peroxins metabolism MeSH
- Peroxisomal Targeting Signals * MeSH
- Peroxisomes metabolism MeSH
- Protozoan Proteins genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Inositol MeSH
- Peroxins MeSH
- Peroxisomal Targeting Signals * MeSH
- Protozoan Proteins MeSH
The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host-parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).
- Keywords
- Mastigamoeba, Archamoebae, chitinous cysts, evolution of parasitism, lateral gene transfer, pathway complexity,
- MeSH
- Anaerobiosis genetics MeSH
- Archamoebae genetics metabolism MeSH
- Adaptation, Biological genetics MeSH
- Biological Evolution * MeSH
- Genome Size MeSH
- Entamoeba histolytica genetics MeSH
- Genome, Protozoan * MeSH
- Parasites genetics MeSH
- Gene Transfer, Horizontal MeSH
- Transcriptome MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
BACKGROUND: Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. RESULTS: We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. CONCLUSION: Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans).
- Keywords
- Evolution, HCF101, Ind1, Iron-sulfur cluster, Mitochondrion, Plastid,
- MeSH
- Cryptosporidium * MeSH
- Phylogeny MeSH
- Cryptosporidiosis * MeSH
- Iron-Sulfur Proteins * genetics MeSH
- Sulfur MeSH
- Iron MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Iron-Sulfur Proteins * MeSH
- Sulfur MeSH
- Iron MeSH