Flavocytochrome c sulfide dehydrogenase (FCC) is an important enzyme of sulfur metabolism in sulfur-oxidizing bacteria, and its catalytic properties have been extensively studied. However, the ultrafast dynamics of FCC is not well understood. We present ultrafast transient absorption and fluorescence spectroscopy measurements to unravel the early events upon excitation of the heme and flavin chromophores embedded in the flavocytochrome c (FccAB) from the bacterium Thiocapsa roseopersicina. The fluorescence kinetics of FccAB suggests that the majority of the photoexcited species decay nonradiatively within the first few picoseconds. Transient absorption spectroscopy supports these findings by suggesting two major dynamic processes in FccAB, internal conversion occurring in about 400 fs and the vibrational cooling occurring in about 4 ps, mostly affecting the heme moiety.
- Publication type
- Journal Article MeSH
Interplay between motion of nuclei and excitations has an important role in molecular photophysics of natural and artificial structures. Here we provide a detailed analysis of coupling between quantized librational modes (librons) and charged excited states (trions) on single phthalocyanine dyes adsorbed on a surface. By means of tip-induced electroluminescence performed with a scanning probe microscope, we identify libronic signatures in spectra of chirally adsorbed phthalocyanines and find that these signatures are absent from spectra of symmetrically adsorbed species. We create a model of the libronic coupling based on the Franck-Condon principle to simulate the spectral features. Experimentally measured librational spectra match very well the theoretically calculated librational eigenenergies and peak intensities (Franck-Condon factors). Moreover, the comparison reveals an unexpected depopulation channel for the zero libron of the excited state that can be effectively controlled by tuning the size of the nanocavity. Our results showcase the possibility of characterizing the dynamics of molecules by their low-energy molecular modes using µeV-resolved tip-enhanced spectroscopy.
- Publication type
- Journal Article MeSH
We report two-dimensional electronic spectroscopy (2DES) experiments on the bacterial reaction center (BRC) from purple bacteria, revealing hidden vibronic and excitonic structure. Through analysis of the coherent dynamics of the BRC, we identify multiple quasi-resonances between pigment vibrations and excitonic energy gaps, and vibronic coherence transfer processes that are typically neglected in standard models of photosynthetic energy transfer and charge separation. We support our assignment with control experiments on bacteriochlorophyll and simulations of the coherent dynamics using a reduced excitonic model of the BRC. We find that specific vibronic coherence processes can readily reveal weak exciton transitions. While the functional relevance of such processes is unclear, they provide a spectroscopic tool that uses vibrations as a window for observing excited state structure and dynamics elsewhere in the BRC via vibronic coupling. Vibronic coherence transfer reveals the upper exciton of the “special pair” that was weakly visible in previous 2DES experiments.
- Publication type
- Journal Article MeSH
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna "designs" becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
- Keywords
- bacteriochlorophylls, carotenoids, chlorophylls, excitation energy transfer, light-harvesting complexes, photoprotection, photosynthesis, photosystems, pigment-protein complexes,
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Photosynthesis MeSH
- Protein Conformation MeSH
- Models, Molecular MeSH
- Protein Multimerization MeSH
- Energy Transfer MeSH
- Plant Proteins chemistry metabolism MeSH
- Plants metabolism MeSH
- Cyanobacteria metabolism MeSH
- Light-Harvesting Protein Complexes chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Plant Proteins MeSH
- Light-Harvesting Protein Complexes MeSH