Most cited article - PubMed ID 32526842
Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading
The enhancement of fuel economy and the emission of greenhouse gases are the key growing challenges around the globe that drive automobile manufacturers to produce lightweight vehicles. Additionally, the reduction in the weight of the vehicle could contribute to its recyclability and performance (for example crashworthiness and impact resistance). One of the strategies is to develop high-performance lightweight materials by the replacement of conventional materials such as steel and cast iron with lightweight materials. The lightweight composite which is commonly referred to as fiber-reinforced plastics (FRP) composite is one of the lightweight materials to achieve fuel efficiency and the reduction of CO2 emission. However, the damage of FRP composite under impact loading is one of the critical factors which affects its structural application. The bumper beam plays a key role in bearing sudden impact during a collision. Polymer composite materials have been abundantly used in a variety of applications such as transportation industries. The main thrust of the present paper deals with the use of high-strength glass fibers as the reinforcing member in the polymer composite to develop a car bumper beam. The mechanical performance and manufacturing techniques are discussed. Based on the literature studies, glass fiber-reinforced composite (GRP) provides more promise in the automotive industry compared to conventional materials such as car bumper beams.
- Keywords
- automotive bumper beam, glass fiber, impact energy: energy absorption, mechanical design, polymer matrix,
- Publication type
- Journal Article MeSH
- Review MeSH
The crashworthiness of composite tubes is widely examined for various types of FRP composites. However, the use of hybrid composites potentially enhances the material characteristics under impact loading. In this regard, this study used a combination of unidirectional glass-carbon fibre reinforced epoxy resin as the hybrid composite tube fabricated by the pultrusion method. Five tubes with different length aspect ratios were fabricated and tested, in which the results demonstrate "how structural energy absorption affects by increasing the length of tubes". Crash force efficiency was used as the criterion to show that the selected L/D are acceptable of crash resistance with 95% efficiency. Different chamfering shapes as the trigger mechanism were applied to the tubes and the triggering effect was examined to understand the impact capacity of different tubes. A finite element model was developed to evaluate different crashworthiness indicators of the test. The results were validated through a good agreement between experimental and numerical simulations. The experimental and numerical results show that hybrid glass/carbon tubes accomplish an average 25.34 kJ/kg specific energy absorption, average 1.43 kJ energy absorption, average 32.43 kN maximum peak load, and average 96.67% crash force efficiency under quasi-static axial loading. The results show that selecting the optimum trigger mechanism causes progressive collapse and increases the specific energy absorption by more than 35%.
- Keywords
- axial load, composite tube, crashworthiness, energy absorption, finite element model, hybrid composites,
- Publication type
- Journal Article MeSH
In this study, the ballistic impact behavior of auxetic sandwich composite human body armor was analyzed using finite element analysis. The auxetic core of the armor was composed of discrete re-entrant unit cells. The sandwich armor structure consisted of a front panel of aluminum alloy (Al 7075-T6), UHMWPE (sandwich core), and a back facet of silicon carbide (SiC) bonded together with epoxy resin. Numerical simulations were run on Explicit Dynamics/Autodyne 3-D code. Various projectile velocities with the same boundary conditions were used to predict the auxetic armor response. These results were compared with those of conventional monolithic body armor. The results showed improved indentation resistance with the auxetic armor. Deformation in auxetic armor was observed greater for each of the cases when compared to the monolithic armor, due to higher energy absorption. The elastic energy dissipation results in the lower indentation in an auxetic armor. The armor can be used safely up to 400 m/s; being used at higher velocities significantly reduced the threat level. Conversely, the conventional monolithic modal does not allow the projectile to pass through at a velocity below 300 m/s; however, the back face becomes severely damaged at 200 m/s. At a velocity of 400 m/s, the front facet of auxetic armor was destroyed; however, the back facet was completely safe, while the monolithic panel did not withstand this velocity and was completely damaged. The results are encouraging in terms of resistance offered by the newly adopted auxetic armor compared to conventional monolithic armor.
As a light structure, composite sandwich panels are distinguished by their significant bending stiffness that is rapidly used in the manufacture of aircraft bodies. This study focuses on the mechanical behaviour of through-thickness polymer, pin-reinforced foam core sandwich panels subjected to indentation and low impact loading. Experimental and computational approaches are used to study the global and internal behaviour of the sandwich panel. The samples for experimental testing were made from glass/polyester laminates as the face sheets and polyurethane foam as the foam core. To further reinforce the samples against bending, different sizes of polymeric pins were implemented on the sandwich panels. The sandwich panel was fabricated using the vacuum infusion process. Using the experimental data, a finite element model of the sample was generated in LS-DYNA software, and the effect of pin size and loading rate were examined. Results of the simulation were validated through a proper prediction compared to the test data. The results of the study show that using polymeric pins, the flexural strength of the panel significantly increased under impact loading. In addition, the impact resistance of the pin-reinforced foam core panel increased up to 20%. Moreover, the size of pins has a significant influence on the flexural behaviour while the sample was under a moderate strain rate. To design an optimum pin-reinforced sandwich panel a "design of experiment model" was generated to predict energy absorption and the maximum peak load of proposed sandwich panels. The best design of the panel is recommended with 1.8 mm face sheet thickness and 5 mm pins diameter.
- Keywords
- composite panel, energy absorption, finite element model, low impact loading, pin-reinforced sandwich panel,
- Publication type
- Journal Article MeSH
As a high-demand material, polymer matrix composites are being used in many advanced industrial applications. Due to ecological issues in the past decade, some attention has been paid to the use of natural fibers. However, using only natural fibers is not desirable for advanced applications. Therefore, hybridization of natural and synthetic fibers appears to be a good solution for the next generation of polymeric composite structures. Composite structures are normally made for various harsh operational conditions, and studies on loading rate and strain-dependency are essential in the design stage of the structures. This review aimed to highlight the different materials' content of hybrid composites in the literature, while addressing the different methods of material characterization for various ranges of strain rates. In addition, this work covers the testing methods, possible failure, and damage mechanisms of hybrid and synthetic FRP composites. Some studies about different numerical models and analytical methods that are applicable for composite structures under different strain rates are described.
- Keywords
- failure mode and deformation, hybrid composite structure, impact loading, strain rate, synthetic composite,
- Publication type
- Journal Article MeSH
- Review MeSH