Most cited article - PubMed ID 32853372
Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi
The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.
- MeSH
- Cell Nucleus * genetics metabolism MeSH
- RNA Editing * MeSH
- Genetic Code MeSH
- Genome, Mitochondrial * MeSH
- RNA, Guide, Kinetoplastida genetics metabolism MeSH
- Codon genetics MeSH
- RNA, Messenger genetics metabolism MeSH
- Mitochondria genetics metabolism MeSH
- Open Reading Frames genetics MeSH
- Protozoan Proteins genetics metabolism MeSH
- RNA, Transfer * genetics metabolism MeSH
- Codon, Terminator genetics MeSH
- Trypanosomatina genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Guide, Kinetoplastida MeSH
- Codon MeSH
- RNA, Messenger MeSH
- Protozoan Proteins MeSH
- RNA, Transfer * MeSH
- Codon, Terminator MeSH
The kinetoplastids are unicellular flagellates that derive their name from the 'kinetoplast', a region within their single mitochondrion harboring its organellar genome of high DNA content, called kinetoplast (k) DNA. Some protein products of this mitochondrial genome are encoded as cryptogenes; their transcripts require editing to generate an open reading frame. This happens through RNA editing, whereby small regulatory guide (g)RNAs direct the proper insertion and deletion of one or more uridines at each editing site within specific transcript regions. An accurate perspective of the kDNA expansion and evolution of their unique uridine insertion/deletion editing across kinetoplastids has been difficult to achieve. Here, we resolved the kDNA structure and editing patterns in the early-branching kinetoplastid Trypanoplasma borreli and compare them with those of the well-studied trypanosomatids. We find that its kDNA consists of circular molecules of about 42 kb that harbor the rRNA and protein-coding genes, and 17 different contigs of approximately 70 kb carrying an average of 23 putative gRNA loci per contig. These contigs may be linear molecules, as they contain repetitive termini. Our analysis uncovered a putative gRNA population with unique length and sequence parameters that is massive relative to the editing needs of this parasite. We validated or determined the sequence identity of four edited mRNAs, including one coding for ATP synthase 6 that was previously thought to be missing. We utilized computational methods to show that the T. borreli transcriptome includes a substantial number of transcripts with inconsistent editing patterns, apparently products of non-canonical editing. This species utilizes the most extensive uridine deletion compared to other studied kinetoplastids to enforce amino acid conservation of cryptogene products, although insertions still remain more frequent. Finally, in three tested mitochondrial transcriptomes of kinetoplastids, uridine deletions are more common in the raw mitochondrial reads than aligned to the fully edited, translationally competent mRNAs. We conclude that the organization of kDNA across known kinetoplastids represents variations on partitioned coding and repetitive regions of circular molecules encoding mRNAs and rRNAs, while gRNA loci are positioned on a highly unstable population of molecules that differ in relative abundance across strains. Likewise, while all kinetoplastids possess conserved machinery performing RNA editing of the uridine insertion/deletion type, its output parameters are species-specific.
- Keywords
- ATPase 6, Euglenozoa, Maxicircle, Metakinetoplastina, Mitochondrion, RNA editing, U-indel editing, Uridine insertion/deletion editing, guide RNA,
- Publication type
- Journal Article MeSH
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
- Keywords
- genomics, next-generation sequencing, trypanosomatids,
- Publication type
- Journal Article MeSH
- Review MeSH
Uridine insertion/deletion (U-indel) editing of mitochondrial mRNA, unique to the protistan class Kinetoplastea, generates canonical as well as potentially non-productive editing events. While the molecular machinery and the role of the guide (g) RNAs that provide required information for U-indel editing are well understood, little is known about the forces underlying its apparently error-prone nature. Analysis of a gRNA:mRNA pair allows the dissection of editing events in a given position of a given mitochondrial transcript. A complete gRNA dataset, paired with a fully characterized mRNA population that includes non-canonically edited transcripts, would allow such an analysis to be performed globally across the mitochondrial transcriptome. To achieve this, we have assembled 67 minicircles of the insect parasite Leptomonas pyrrhocoris, with each minicircle typically encoding one gRNA located in one of two similar-sized units of different origin. From this relatively narrow set of annotated gRNAs, we have dissected all identified mitochondrial editing events in L. pyrrhocoris, the strains of which dramatically differ in the abundance of individual minicircle classes. Our results support a model in which a multitude of editing events are driven by a limited set of gRNAs, with individual gRNAs possessing an inherent ability to guide canonical and non-canonical editing.
- MeSH
- RNA Editing * MeSH
- Phylogeny MeSH
- Genome, Protozoan * MeSH
- RNA, Messenger metabolism MeSH
- RNA, Mitochondrial metabolism MeSH
- Transcriptome MeSH
- Trypanosomatina genetics metabolism MeSH
- RNA, Guide, CRISPR-Cas Systems MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Messenger MeSH
- RNA, Mitochondrial MeSH
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
- Keywords
- Diplonemida, Euglenida, Kinetoplastida, microbial eukaryotes, phylogeny, systematics,
- MeSH
- Ecosystem MeSH
- Euglenozoa classification genetics physiology virology MeSH
- Phylogeny MeSH
- Mimiviridae pathogenicity MeSH
- Symbiosis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH