Nejvíce citovaný článek - PubMed ID 33114049
Dual Effects of Beta-Hydroxy-Beta-Methylbutyrate (HMB) on Amino Acid, Energy, and Protein Metabolism in the Liver and Muscles of Rats with Streptozotocin-Induced Type 1 Diabetes
Alanine and glutamine are the principal glucogenic amino acids. Most originate from muscles, where branched-chain amino acids (valine, leucine, and isoleucine) are nitrogen donors and, under exceptional circumstances, a source of carbons for glutamate synthesis. Glutamate is a nitrogen source for alanine synthesis from pyruvate and a substrate for glutamine synthesis by glutamine synthetase. The following differences between alanine and glutamine, which can play a role in their use in gluconeogenesis, are shown: (i) glutamine appearance in circulation is higher than that of alanine; (ii) the conversion to oxaloacetate, the starting substance for glucose synthesis, is an ATP-consuming reaction for alanine, which is energetically beneficial for glutamine; (iii) most alanine carbons, but not glutamine carbons, originate from glucose; and (iv) glutamine acts a substrate for gluconeogenesis in the liver, kidneys, and intestine, whereas alanine does so only in the liver. Alanine plays a significant role during early starvation, exposure to high-fat and high-protein diets, and diabetes. Glutamine plays a dominant role in gluconeogenesis in prolonged starvation, acidosis, liver cirrhosis, and severe illnesses like sepsis and acts as a substrate for alanine synthesis in the small intestine. Interactions among muscles and the liver, kidneys, and intestine ensuring optimal alanine and glutamine supply for gluconeogenesis are suggested.
- Klíčová slova
- branched-chain amino acids, cirrhosis, diabetes, glucose, starvation,
- MeSH
- alanin * metabolismus MeSH
- glukoneogeneze * MeSH
- glukosa metabolismus MeSH
- glutamin * metabolismus MeSH
- játra * metabolismus MeSH
- ledviny * metabolismus MeSH
- lidé MeSH
- tenké střevo * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- alanin * MeSH
- glukosa MeSH
- glutamin * MeSH
Aspartic acid exists in L- and D-isoforms (L-Asp and D-Asp). Most L-Asp is synthesized by mitochondrial aspartate aminotransferase from oxaloacetate and glutamate acquired by glutamine deamidation, particularly in the liver and tumor cells, and transamination of branched-chain amino acids (BCAAs), particularly in muscles. The main source of D-Asp is the racemization of L-Asp. L-Asp transported via aspartate-glutamate carrier to the cytosol is used in protein and nucleotide synthesis, gluconeogenesis, urea, and purine-nucleotide cycles, and neurotransmission and via the malate-aspartate shuttle maintains NADH delivery to mitochondria and redox balance. L-Asp released from neurons connects with the glutamate-glutamine cycle and ensures glycolysis and ammonia detoxification in astrocytes. D-Asp has a role in brain development and hypothalamus regulation. The hereditary disorders in L-Asp metabolism include citrullinemia, asparagine synthetase deficiency, Canavan disease, and dicarboxylic aminoaciduria. L-Asp plays a role in the pathogenesis of psychiatric and neurologic disorders and alterations in BCAA levels in diabetes and hyperammonemia. Further research is needed to examine the targeting of L-Asp metabolism as a strategy to fight cancer, the use of L-Asp as a dietary supplement, and the risks of increased L-Asp consumption. The role of D-Asp in the brain warrants studies on its therapeutic potential in psychiatric and neurologic disorders.
The most frequent alterations in plasma amino acid concentrations in type 1 and type 2 diabetes are decreased L-serine and increased branched-chain amino acid (BCAA; valine, leucine, and isoleucine) levels. The likely cause of L-serine deficiency is decreased synthesis of 3-phosphoglycerate, the main endogenous precursor of L-serine, due to impaired glycolysis. The BCAA levels increase due to decreased supply of pyruvate and oxaloacetate from glycolysis, enhanced supply of NADH + H+ from beta-oxidation, and subsequent decrease in the flux through the citric acid cycle in muscles. These alterations decrease the supply of α-ketoglutarate for BCAA transamination and the activity of branched-chain keto acid dehydrogenase, the rate-limiting enzyme in BCAA catabolism. L-serine deficiency contributes to decreased synthesis of phospholipids and increased synthesis of deoxysphinganines, which play a role in diabetic neuropathy, impaired homocysteine disposal, and glycine deficiency. Enhanced BCAA levels contribute to increased levels of aromatic amino acids (phenylalanine, tyrosine, and tryptophan), insulin resistance, and accumulation of various metabolites, whose influence on diabetes progression is not clear. It is concluded that amino acid concentrations should be monitored in patients with diabetes, and systematic investigation is needed to examine the effects of L-serine and glycine supplementation on diabetes progression when these amino acids are decreased.
- Klíčová slova
- branched-chain amino acids, glycine, insulin resistance, serine,
- MeSH
- aminokyseliny metabolismus MeSH
- diabetes mellitus 2. typu * metabolismus MeSH
- glycin metabolismus MeSH
- glykolýza MeSH
- kyselina pyrohroznová MeSH
- lidé MeSH
- serin metabolismus MeSH
- větvené aminokyseliny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aminokyseliny MeSH
- glycin MeSH
- kyselina pyrohroznová MeSH
- serin MeSH
- větvené aminokyseliny MeSH
L-serine plays an essential role in a broad range of cellular functions including protein synthesis, neurotransmission, and folate and methionine cycles and synthesis of sphingolipids, phospholipids, and sulphur containing amino acids. A hydroxyl side-chain of L-serine contributes to polarity of proteins, and serves as a primary site for binding a phosphate group to regulate protein function. D-serine, its D-isoform, has a unique role. Recent studies indicate increased requirements for L-serine and its potential therapeutic use in some diseases. L-serine deficiency is associated with impaired function of the nervous system, primarily due to abnormal metabolism of phospholipids and sphingolipids, particularly increased synthesis of deoxysphingolipids. Therapeutic benefits of L-serine have been reported in primary disorders of serine metabolism, diabetic neuropathy, hyperhomocysteinemia, and amyotrophic lateral sclerosis. Use of L-serine and its metabolic products, specifically D-serine and phosphatidylserine, has been investigated for the therapy of renal diseases, central nervous system injury, and in a wide range of neurological and psychiatric disorders. It is concluded that there are disorders in which humans cannot synthesize L-serine in sufficient quantities, that L-serine is effective in therapy of disorders associated with its deficiency, and that L-serine should be classified as a "conditionally essential" amino acid.
- Klíčová slova
- deoxysphingolipids, diabetes, glycine, hyperhocysteinemia, neuropathy, serine supplementation,
- MeSH
- esenciální aminokyseliny MeSH
- fosfolipidy MeSH
- lidé MeSH
- serin * MeSH
- sfingolipidy metabolismus MeSH
- vrozené poruchy metabolismu aminokyselin * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- esenciální aminokyseliny MeSH
- fosfolipidy MeSH
- serin * MeSH
- sfingolipidy MeSH
The aim of the article is to examine side effects of increased dietary intake of amino acids, which are commonly used as a dietary supplement. In addition to toxicity, mutagenicity and carcinogenicity, attention is focused on renal and gastrointestinal tract functions, ammonia production, and consequences of a competition with other amino acids for a carrier at the cell membranes and enzymes responsible for their degradation. In alphabetic order are examined arginine, beta-alanine, branched-chain amino acids, carnosine, citrulline, creatine, glutamine, histidine, beta -hydroxy- beta -methylbutyrate, leucine, and tryptophan. In the article is shown that enhanced intake of most amino acid supplements may not be risk-free and can cause a number of detrimental side effects. Further research is necessary to elucidate effects of high doses and long-term consumption of amino acid supplements on immune system, brain function, muscle protein balance, synthesis of toxic metabolites, and tumor growth and examine their suitability under certain circumstances. These include elderly, childhood, pregnancy, nursing a baby, and medical condition, such as diabetes and liver disease. Studies are also needed to examine adaptive response to a long-term intake of any substance and consequences of discontinuation of supplementation.
- MeSH
- aminokyseliny škodlivé účinky metabolismus MeSH
- arginin farmakologie MeSH
- dítě MeSH
- glutamin * metabolismus farmakologie MeSH
- histidin metabolismus MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- potravní doplňky * škodlivé účinky MeSH
- senioři MeSH
- těhotenství MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- senioři MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- arginin MeSH
- glutamin * MeSH
- histidin MeSH
The article shows that skeletal muscle plays a dominant role in the catabolism of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and the pathogenesis of their decreased concentrations in liver cirrhosis, increased concentrations in diabetes, and nonspecific alterations in disorders with signs of systemic inflammatory response syndrome (SIRS), such as burn injury and sepsis. The main role of skeletal muscle in BCAA catabolism is due to its mass and high activity of BCAA aminotransferase, which is absent in the liver. Decreased BCAA levels in liver cirrhosis are due to increased use of the BCAA as a donor of amino group to alpha-ketoglutarate for synthesis of glutamate, which in muscles acts as a substrate for ammonia detoxification to glutamine. Increased BCAA levels in diabetes are due to alterations in glycolysis, citric acid cycle, and fatty acid oxidation. Decreased glycolysis and citric cycle activity impair BCAA transamination to branched-chain keto acids (BCKAs) due to decreased supply of amino group acceptors (alpha-ketoglutarate, pyruvate, and oxaloacetate); increased fatty acid oxidation inhibits flux of BCKA through BCKA dehydrogenase due to increased supply of NADH and acyl-CoAs. Alterations in BCAA levels in disorders with SIRS are inconsistent due to contradictory effects of SIRS on muscles. Specifically, increased proteolysis and insulin resistance tend to increase BCAA levels, whereas activation of BCKA dehydrogenase and glutamine synthesis tend to decrease BCAA levels. The studies are needed to elucidate the role of alterations in BCAA metabolism and the effects of BCAA supplementation on the outcomes of specific diseases.
- MeSH
- diabetes mellitus metabolismus MeSH
- isoleucin metabolismus MeSH
- jaterní cirhóza metabolismus MeSH
- kosterní svaly metabolismus MeSH
- leucin metabolismus MeSH
- lidé MeSH
- metabolické nemoci metabolismus MeSH
- valin metabolismus MeSH
- větvené aminokyseliny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- isoleucin MeSH
- leucin MeSH
- valin MeSH
- větvené aminokyseliny MeSH