Nejvíce citovaný článek - PubMed ID 33208944
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
- MeSH
- cichlidy * genetika MeSH
- fylogeneze MeSH
- jezera MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Tanzanie MeSH
- Názvy látek
- mitochondriální DNA MeSH
Owing to the largely unexplored diversity of metazoan parasites, their speciation mechanisms and the circumstances under which such speciation occurs - in allopatry or sympatry - remain vastly understudied. Cichlids and their monogenean flatworm parasites have previously served as a study system for macroevolutionary processes, e.g., for the role of East African host radiations on parasite communities. Here, we investigate the diversity and evolution of the poorly explored monogeneans infecting a West and Central African lineage of cichlid fishes: Chromidotilapiini, which is the most species-rich tribe of cichlids in this region. We screened gills of 149 host specimens (27 species) from natural history collections and measured systematically informative characters of the sclerotised attachment and reproductive organs of the parasites. Ten monogenean species (Dactylogyridae: Cichlidogyrus and Onchobdella) were found, eight of which are newly described and one redescribed herein. The phylogenetic positions of chromidotilapiines-infecting species of Cichlidogyrus were inferred through a parsimony analysis of the morphological characters. Furthermore, we employed machine learning algorithms to detect morphological features associated with the main lineages of Cichlidogyrus. Although the results of these experimental algorithms remain inconclusive, the parsimony analysis indicates that West and Central African lineages of Cichlidogyrus and Onchobdella are monophyletic, unlike the paraphyletic host lineages. Several instances of host sharing suggest occurrences of intra-host speciation (sympatry) and host switching (allopatry). Some morphological variation was recorded that may also indicate the presence of species complexes. We conclude that collection material can provide important insights on parasite evolution despite the lack of well-preserved DNA material.
TITLE: À l’Ouest, rien de nouveau ? L’histoire évolutive des monogènes (Dactylogyridae : Cichlidogyrus, Onchobdella) infectant une tribu de poissons cichlidés (Chromidotilapiini) d’Afrique occidentale et centrale. ABSTRACT: En raison de la nature largement inexplorée de la diversité des parasites métazoaires, leurs mécanismes de spéciation et les circonstances dans lesquelles cette spéciation se produit—allopatrie ou sympatrie—restent très peu étudiés. Les cichlidés et leurs parasites Plathelminthes monogènes ont déjà servi de modèle pour l’étude des processus macro-évolutifs, par exemple pour le rôle des radiations d’hôtes de l’Afrique de l’Est sur les communautés de parasites. Ici, nous étudions la diversité et l’évolution des monogènes peu étudiées qui infestent une lignée de poissons cichlidés d’Afrique occidentale et centrale : les Chromidotilapiini, qui est la tribu de cichlidés la plus riche en espèces dans cette région. Nous avons examiné les branchies de 149 spécimens hôtes (27 espèces) provenant de musées d’histoire naturelle et mesuré systématiquement les caractères informatifs des pièces sclérifiées du hapteur et des organes copulateurs des parasites. Dix espèces de monogènes (Dactylogyridae : Cichlidogyrus et Onchobdella) ont été trouvées ; huit sont nouvelles pour la science et une est redécrite. Les positions phylogénétiques des espèces de Cichlidogyrus infectant les chromidotilapiines ont été déduites par une analyse de parcimonie des caractères morphologiques. En outre, nous avons utilisé des algorithmes d’apprentissage automatique pour détecter les caractéristiques morphologiques associées aux principales lignées de Cichlidogyrus. Bien que les résultats de ces algorithmes expérimentaux restent peu concluants, l’analyse de parcimonie indique que les lignées de Cichlidogyrus et d’Onchobdella de l’Afrique de l’Ouest et Central sont monophylétiques, contrairement aux lignées d’hôtes qui sont paraphylétiques. Plusieurs cas de partage d’hôtes suggèrent des occurrences de spéciation synxénique (sympatrie) et de changement d’hôte (allopatrie). Certaines variations morphologiques ont été enregistrées et peuvent également indiquer la présence de complexes d’espèces. Nous concluons donc que le matériel de collection peut fournir des informations importantes sur l’évolution des parasites malgré le manque d'ADN exploitable.
- Klíčová slova
- Allopatric speciation, Host-parasite evolution, Machine learning, Maximum parsimony, Sympatric speciation,
- MeSH
- cichlidy * parazitologie MeSH
- fylogeneze MeSH
- paraziti * MeSH
- ploštěnci * genetika MeSH
- Trematoda * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Ergasilus (von Nordmann, 1832) (Ergasilidae) is a species-rich group of parasitic copepods with a wide distribution in freshwater, marine and brackish environments. Up to now, 9 species of Ergasilus are known from cichlid fishes in Africa. In this study, 5 species, including 3 new, were collected from the gills of 12 cichlid species (11 genera: Bathybates, Ctenochromis, Eretmodus, Gnathochromis, Lamprologus, Neolamprologus, Ophthalmotilapia, Perissodus, Simochromis, Spathodus and Tanganicodus) of the northeastern shore of Lake Tanganyika in Burundi, namely E. macrodactylus (Sars, 1909), E. megacheir (Sars, 1909), E. caparti n. sp., E. parasarsi n. sp. and E. parvus n. sp. All species found were identified and described on the basis of adult female specimens using an integrative taxonomy approach mixing morphological characterization and molecular analyses of 2 ribosomal DNA markers (partial 18S and 28S rDNA sequences). An identification key for Ergasilus species from Lake Tanganyika is included. This study provides the first molecular data for Ergasilus species in Africa. The phylogenetic analyses suggest that the Ergasilus species parasitizing Lake Tanganyikan cichlids form a well-supported clade within the Ergasilidae. However, their phylogenetic relationships with other congeners still remain unclear due to a lack of molecular data for this diverse genus.
- Klíčová slova
- Africa, Tanganyika, cichlids, diversity, parasitic crustaceans,
- MeSH
- cichlidy * genetika parazitologie MeSH
- Copepoda * genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- jezera MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH
African cichlids (subfamily: Pseudocrenilabrinae) are among the most diverse vertebrates, and their propensity for repeated rapid radiation has made them a celebrated model system in evolutionary research. Nonetheless, despite numerous studies, phylogenetic uncertainty persists, and riverine lineages remain comparatively underrepresented in higher-level phylogenetic studies. Heterogeneous gene histories resulting from incomplete lineage sorting (ILS) and hybridization are likely sources of uncertainty, especially during episodes of rapid speciation. We investigate the relationships of Pseudocrenilabrinae and its close relatives while accounting for multiple sources of genetic discordance using species tree and hybrid network analyses with hundreds of single-copy exons. We improve sequence recovery for distant relatives, thereby extending the taxonomic reach of our probes, with a hybrid reference guided/de novo assembly approach. Our analyses provide robust hypotheses for most higher-level relationships and reveal widespread gene heterogeneity, including in riverine taxa. ILS and past hybridization are identified as the sources of genetic discordance in different lineages. Sampling of various Blenniiformes (formerly Ovalentaria) adds strong phylogenomic support for convict blennies (Pholidichthyidae) as sister to Cichlidae and points to other potentially useful protein-coding markers across the order. A reliable phylogeny with representatives from diverse environments will support ongoing taxonomic and comparative evolutionary research in the cichlid model system. [African cichlids; Blenniiformes; Gene tree heterogeneity; Hybrid assembly; Phylogenetic network; Pseudocrenilabrinae; Species tree.].
Despite the widespread recognition of adaptive radiation as a driver of speciation, the mechanisms by which natural selection generates new species are incompletely understood. The evolutionary radiation of endemic East Asian cyprinids has been proposed as evolving through a change in spawning habits, involving a transition from semibuoyant eggs to adhesive eggs in response to crosslinked river-lake system formation. Here, we investigated the molecular mechanisms that underpin this radiation, associated with egg hydration and adhesiveness. We demonstrated that semibuoyant eggs enhance hydration by increasing the degradation of yolk protein and accumulation of Ca2+ and Mg2+ ions, while adhesive eggs improve adhesiveness and hardness of the egg envelope by producing an adhesive layer and a unique 4th layer to the egg envelope. Based on multiomics analyses and verification tests, we showed that during the process of adaptive radiation, adhesive eggs downregulated the "vitellogenin degradation pathway," "zinc metalloprotease pathway," and "ubiquitin-proteasome pathway" and the pathways of Ca2+ and Mg2+ active transport to reduce their hydration. At the same time, adhesive eggs upregulated the crosslinks of microfilament-associated proteins and adhesive-related proteins, the hardening-related proteins of the egg envelope, and the biosynthesis of glycosaminoglycan in the ovary to generate adhesiveness. These findings illustrate the novel molecular mechanisms associated with hydration and adhesiveness of freshwater fish eggs and identify critical molecular mechanisms involved in the adaptive radiation of endemic East Asian cyprinids. We propose that these key egg attributes may function as "magic traits" in this adaptive radiation.
- Publikační typ
- časopisecké články MeSH
The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim-light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth-related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep-water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.
- Klíčová slova
- freshwater fish, opsin, photic environment, rod photoreceptor, spectral tuning, vision,
- MeSH
- cichlidy * genetika MeSH
- fylogeneze MeSH
- jezera MeSH
- molekulární evoluce MeSH
- rodopsin genetika MeSH
- ryby MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH
- Názvy látek
- rodopsin MeSH
- voda MeSH
Vegetation complexity is an important predictor of animal species diversity. Specifically, taller vegetation should provide more potential ecological niches and thus harbor communities with higher species richness and functional diversity (FD). Resource use behavior is an especially important functional trait because it links species to their resource base with direct relevance to niche partitioning. However, it is unclear how exactly the diversity of resource use behavior changes with vegetation complexity. To address this question, we studied avian FD in relation to vegetation complexity along a continental-scale vegetation gradient. We quantified foraging behavior of passerine birds in terms of foraging method and substrate use at 21 sites (63 transects) spanning 3,000 km of woodlands and forests in Australia. We also quantified vegetation structure on 630 sampling points at the same sites. Additionally, we measured morphological traits for all 111 observed species in museum collections. We calculated individual-based, abundance-weighted FD in morphology and foraging behavior and related it to species richness and vegetation complexity (indexed by canopy height) using structural equation modeling, rarefaction analyses, and distance-based metrics. FD of morphology and foraging methods was best predicted by species richness. However, FD of substrate use was best predicted by canopy height (ranging 10-30 m), but only when substrates were categorized with fine resolution (17 categories), not when categorized coarsely (8 categories). These results suggest that, first, FD might increase with vegetation complexity independently of species richness, but whether it does so depends on the studied functional trait. Second, patterns found might be shaped by how finely we categorize functional traits. More complex vegetation provided larger "ecological space" with more resources, allowing the coexistence of more species with disproportionately more diverse foraging substrate use. We suggest that the latter pattern was driven by nonrandom accumulation of functionally distinct species with increasing canopy height.
- Klíčová slova
- birds, foraging behavior, functional diversity, resource partitioning, species richness, vegetation complexity,
- Publikační typ
- časopisecké články MeSH
Little phylogeographic structure is presumed for highly mobile species in pelagic zones. Lake Tanganyika is a unique ecosystem with a speciose and largely endemic fauna famous for its remarkable evolutionary history. In bathybatine cichlid fishes, the pattern of lake-wide population differentiation differs among species. We assessed the congruence between the phylogeographic structure of bathybatine cichlids and their parasitic flatworm Cichlidogyrus casuarinus to test the magnifying glass hypothesis. Additionally, we evaluated the use of a PoolSeq approach to study intraspecific variation in dactylogyrid monogeneans. The lake-wide population structure of C. casuarinus ex Hemibates stenosoma was assessed based on a portion of the cox1 gene combined with morphological characterisation. Additionally, intraspecific mitogenomic variation among 80 parasite samples from one spatially constrained metapopulation was assessed using shotgun NGS. While no clear geographic genetic structure was detected in parasites, both geographic and host-related phenotypic variation was apparent. The incongruence with the genetic north-south gradient observed in H. stenosoma may be explained by the broad host range of this flatworm including eupelagic bathybatine host species that form panmictic populations across the lake. In addition, we present the first parasite mitogenome from Lake Tanganyika and propose a methodological framework for studying the intraspecific mitogenomic variation of dactylogyrid monogeneans.
- Klíčová slova
- Bathybatini, Cichlidogyrus, PoolSeq, cox1, monogenea,
- Publikační typ
- časopisecké články MeSH