Most cited article - PubMed ID 33790468
High and rising economic costs of biological invasions worldwide
Many invasive non-native species gradually become embedded within local cultures. Such species can increasingly be perceived by society as familiar or even native elements of the social-ecological system and become an integral part of local cultures. Here, we explore this phenomenon and refer to it as the cultural integration of invasive species. Although culturally integrated species can positively contribute to people's lives and well-being, and provide new or lost ecosystem services, their acceptance can also hinder the ability of conservation managers to successfully manage invasive species by reducing public support for their management. Cultural integration can infringe upon social values and cultural identities, and contribute to the erosion and homogenization of biocultural diversity. It can also modify or displace the cultural uses and values of native species, and may disrupt social-ecological legacies and dynamics. We present the main mechanisms of cultural integration, its drivers and major implications, and provide key recommendations for the management and conservation of biological and cultural diversity.
- Publication type
- Journal Article MeSH
- Review MeSH
Biological invasions threaten global biodiversity, human well-being and economies. Many regional and taxonomic syntheses of monetary costs have been produced recently but with important knowledge gaps owing to uneven geographic and taxonomic research intensity. Here we combine species distribution models, macroeconomic data and the InvaCost database to produce the highest resolution spatio-temporal cost estimates currently available to bridge these gaps. From a subset of 162 invasive species with 'highly reliable' documented costs at the national level, our interpolation focuses on countries that have not reported any costs despite the known presence of invasive species. This analysis demonstrates a substantial underestimation, with global costs potentially estimated to be 1,646% higher for these species than previously recorded. This discrepancy was uneven geographically and taxonomically, respectively peaking in Europe and for plants. Our results showed that damage costs were primarily driven by gross domestic product, human population size, agricultural area and environmental suitability, whereas management expenditure correlated with gross domestic product and agriculture areas. We also found a lag time for damage costs of 46 years, but management spending was not delayed. The methodological predictive approach of this study provides a more complete view of the economic dimensions of biological invasions and narrows the global disparity in invasion cost reporting.
- MeSH
- Biodiversity * MeSH
- Conservation of Natural Resources * economics MeSH
- Introduced Species * economics MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
Biological invasions and human migrations have increased globally due to socio-economic drivers and environmental factors that have enhanced cultural, economic, and geographic connectivity. Both processes involve the movement, establishment, and spread of species, yet unfold within fundamentally different philosophical, social and biological contexts. Hence, studying biological invasions (invasion science) and human migration (migration studies) presents complex parallels that are potentially fruitful to explore. Here, we examined nuanced parallels and differences between these two phenomena, integrating historical, socio-political, and ethical perspectives. Our review underscores the need for context-specific approaches in policymaking and governance to address effectively the challenges and opportunities of human migration and harm from biological invasions. We suggest that approaches to studying the drivers of biological invasions and human migration provide an excellent opportunity for transdisciplinary research; one that acknowledges the complexities and potential insights from both fields of study. Ultimately, integrating natural and social sciences offers a promising avenue for enriching the understanding of invasion biology and migration dynamics while pursuing just, equitable, and sustainable solutions. However, while human migration is a clear driver of biological invasions, drawing on principles from biological invasions to understand past and current human migration risks oversimplification and the potential for harmful generalisations that disregard the intrinsic rights and cultural dynamics of human migrations. By doing so, we provide insights and frameworks to support the development of context-specific policies that respect human dignity, foster cultural diversity, and address migration challenges in ways that promote global cooperation and justice. This interdisciplinary approach highlights the potential for transdisciplinary research that acknowledges complexities in both fields, ultimately enriching our understanding of invasion biology and migration dynamics while pursuing equitable and sustainable solutions.
- Keywords
- biosecurity, cultural assimilation, ecological resilience, ethnocentrism, globalisation, sociopolitical dynamics, transdisciplinary research,
- MeSH
- Humans MeSH
- Human Migration * MeSH
- Introduced Species * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Invasion science addresses interconnected ecological, economic, and social challenges posed by the introduction of nonnative species. Therefore, invasion scientists have to consider and reconcile interdisciplinary needs while addressing the potential implications of their findings. Navigating diverse disciplines, including environmental sciences, ecology, economics, and the humanities, invasion scientists seek to arrive at informed decisions on invasion risk, impact, and management. Individual biases, uncertainties, and systemic pressures influence the ability to maintain objectivity and resist pressures that might otherwise distort their findings or applications. In the present commentary, we examine conceptual and ethical dilemmas within the field of invasion science, particularly reputational and the risks of the discipline perpetuating its own relevance by framing invasions as insurmountable challenges. In the discussion, we highlight how incentive structures, biased assessments and framing, and conflicts of interest may compromise the discipline's integrity. We also explore questions surrounding human responsibility to animal welfare and highlight ethical conundrums in the management of invasive species.
- Keywords
- environmental ethics, ethical dilemmas, human responsibility, philosophical challenges, sustainability science,
- Publication type
- Journal Article MeSH
The rising introduction of invasive species through trade networks threatens biodiversity and ecosystem services. Yet, we have a limited understanding of how transportation networks determine spatiotemporal patterns of range expansion. This knowledge gap may stem from two reasons. First, current analytical models fail to integrate the invader's life-history dynamics with heterogeneity in human-mediated dispersal patterns. Second, classical statistical methods often fail to provide reliable estimates of model parameters, such as time and place of species introduction and life-history characteristics, due to spatial biases in the presence-only records and lack of informative demographic data. To address these gaps, we first formulate an age-structured metapopulation model that uses a probability matrix to emulate human-mediated dispersal patterns. The model reveals that an invader spreads radially along the shortest network path, such that the inter-patch network distances decrease with increasing traffic volume and reproductive value of hitchhikers. Next, we propose a hierarchical Bayesian statistical method to estimate model parameters using presence-only data and prior demographic knowledge. To show the utility of the statistical approach, we analyze zebra mussel (Dreissena polymorpha) expansion in North America through the inland commercial shipping network. Our analysis suggests that zebra mussels might have been introduced before 1981, indicating a lag of five years between time of introduction and first detection in late 1986. Furthermore, using our statistical model we estimated a one in three chance that they were introduced near Kingsville (Ontario, Canada), where they were first reported. We also find survival, fecundity, and dispersal during early life (1-2 years) play a critical role in determining the expansion success of these mollusks. These results underscore the importance of fusing prior scientific knowledge with observation and demographic processes in a Bayesian framework for conceptual and practical understanding of how invasive species spread by human agency.
- Keywords
- Bayesian statistics, age-structure, elasticity analysis, invasion, metapopulation, transportation network,
- Publication type
- Journal Article MeSH
In a hyperconnected world, framing and managing biological invasions poses complex and contentious challenges, affecting socioeconomic and environmental sectors. This complexity distinguishes the field and fuels polarized debates. In the present article, we synthesize four contentious issues in invasion science that are rarely addressed together: vocabulary usage, the potential benefits of nonnative species, perceptions shifting because of global change, and rewilding practices and biological invasions. Researchers have predominantly focused on single issues; few have addressed multiple components of the debate within or across disciplinary boundaries. Ignoring the interconnected nature of these issues risks overlooking crucial cross-links. We advocate for interdisciplinary approaches that better integrate social and natural sciences. Although they are challenging, interdisciplinary collaborations offer hope to overcome polarization issues in invasion science. These may bridge disagreements, facilitate knowledge exchange, and reshape invasion science narratives. Finally, we present a contemporary agenda to advance future research, management, and constructive dialogue.
- Keywords
- conservation biology, human–wildlife interactions, invasion science, invasive species, natural resource management,
- Publication type
- Journal Article MeSH
- Review MeSH
In today's ever-evolving scientific landscape, invasion science faces a plethora of challenges, such as terminological inconsistency and the rapidly growing literature corpus with few or incomplete syntheses of knowledge, which may be perceived as a stagnation in scientific progress. We explore the concept of 'competency', which is extensively debated across disciplines such as psychology, philosophy, and linguistics. Traditionally, it is associated with attributes that enable superior performance and continuous ingenuity. We propose that the concept of competency can be applied to invasion science as the ability to creatively and critically engage with global challenges. For example, competency may help develop innovative strategies for understanding and managing the multifaceted, unprecedented challenges posed by the spread and impacts of non-native species, as well as identifying novel avenues of inquiry for management. Despite notable advancements and the exponential increase in scholarly publications, invasion science still encounters obstacles such as insufficient interdisciplinary collaboration paralleled by a lack of groundbreaking or actionable scientific advancements. To enhance competency in invasion science, a paradigm shift is needed. This shift entails fostering interdisciplinary collaboration, nurturing creative and critical thinking, and establishing a stable and supportive environment for early career researchers, thereby promoting the emergence of competency and innovation. Embracing perspectives from practitioners and decision makers, alongside diverse disciplines beyond traditional ecological frameworks, can further add novel insights and innovative methodologies into invasion science. Invasion science must also address the ethical implications of its practices and engage the public in awareness and education programs. Such initiatives can encourage a more holistic understanding of invasions, attracting and cultivating competent minds capable of thinking beyond conventional paradigms and contributing to the advancement of the field in a rapidly changing world.
- Keywords
- Competence, Evolution, Innovation, Invasion science, Novelty, Transdisciplinarity,
- MeSH
- Creativity * MeSH
- Humans MeSH
- Thinking MeSH
- Professional Competence MeSH
- Science MeSH
- Introduced Species MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Although invasive alien species have long been recognized as a major threat to nature and people, until now there has been no comprehensive global review of the status, trends, drivers, impacts, management and governance challenges of biological invasions. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Thematic Assessment Report on Invasive Alien Species and Their Control (hereafter 'IPBES invasive alien species assessment') drew on more than 13,000 scientific publications and reports in 15 languages as well as Indigenous and local knowledge on all taxa, ecosystems and regions across the globe. Therefore, it provides unequivocal evidence of the major and growing threat of invasive alien species alongside ambitious but realistic approaches to manage biological invasions. The extent of the threat and impacts has been recognized by the 143 member states of IPBES who approved the summary for policymakers of this assessment. Here, the authors of the IPBES assessment outline the main findings of the IPBES invasive alien species assessment and highlight the urgency to act now.
- MeSH
- Biodiversity * MeSH
- Ecosystem MeSH
- Conservation of Natural Resources * MeSH
- Introduced Species * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The round goby Neogobius melanostomus is a notoriously invasive fish originating from the Ponto-Caspian region that in recent decades has successfully spread across the globe. One of its primary impacts is direct predation; in addition, when entering new ecosystems, the round goby is likely to become a food resource for many higher native predators. However, little is known either about the indirect effects of predators on the round goby as prey or its feeding behaviour and activity. The non-consumptive effect of the presence of higher native predators presumably plays an important role in mitigating the impact of non-native round gobies as mesopredators on benthic invertebrate communities, especially when both higher- and mesopredators occupy the same habitat. We tested the food consumption probability and gut evacuation rates in round gobies in response to chemical signals from a higher predator, the European eel Anguilla anguilla. Gobies were placed individually in experimental arenas equipped with shelters and exposed to water from a tank in which (a) the higher predator had actively preyed on a heterospecific prey, earthworms Lumbricus sp. (the heterospecific treatment; HS); (b) the higher predator had fed on round gobies (the conspecific treatment; CS); or (c) the water was provided as a control treatment (C). To ensure exposure to the chemical stimuli, this study incorporated the application of skin extracts containing damaged-released alarm cues from the CS treatment; distilled water was used for the remaining treatments. No significant differences were observed in either the food consumption probability or gut evacuation rate in the tested treatments. Despite the lack of reaction to the chemical stimuli, round gobies did exhibit high evacuation rates (R = 0.2323 ± 0.011 h-1; mean ± SE) in which complete gut clearance occurred within 16 h regardless of the applied treatment. This rapid food processing suggests high efficiency and great pressure on resources regardless of the presence or not of a higher predator. These findings hint at the boldness of round gobies, which did not exhibit any pronounced threat sensitivity. This would seem to suggest great efficiency in food processing and a potential competitive advantage over local native species when colonising new ecosystems, irrespective of the presence of native predators. Our study did not detect any non-consumptive effect attributable to the higher predator, given that the feeding activity of the invasive round goby was not altered.
- Keywords
- alarm cues, aquatic invasions, food consumption, gut evacuation rate, non-native species, predation efficiency, shreckstoff,
- Publication type
- Journal Article MeSH
The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.
- Keywords
- domestication, globalization, insecticide resistance, integrated pest management, invasive species,
- MeSH
- Biological Evolution MeSH
- Blattellidae * genetics MeSH
- Phylogeny MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH