Most cited article - PubMed ID 33977988
Antifouling fluoropolymer-coated nanomaterials for 19F MRI
Fluorine magnetic resonance imaging (19F MRI) using polymer tracers overcomes limitations of conventional proton MRI by offering enhanced specificity. However, the lack of systematic comparisons among fluorinated polymers has hindered rational tracer design. In this study, we synthesized an extensive library of water-soluble fluorinated copolymers by varying ratios of hydrophilic and fluorinated monomers and evaluated their 19F MRI properties to identify key structure-property relationships. Optimizing the hydrophilicity of the non-fluorinated comonomer increased fluorine content without compromising water solubility, thereby enhancing the MRI signal. Factors such as chemical structure, molecular interactions, and magnetic relaxation times also significantly influenced tracer performance. The optimized copolymer, poly((N-(2,2,2-trifluoroethyl)acrylamide)60-stat-(N-(2-hydroxyethyl)acrylamide)40), exhibited unprecedented 19F MRI sensitivity with detection limits below 1 mg mL-1, the highest reported to date. We demonstrated the tracer's potential through successful in vivo 19F MRI visualization of solid tumors in mouse models, highlighting its promise for advanced biomedical imaging applications.
- Publication type
- Journal Article MeSH
Magnetic resonance imaging (MRI) relies on appropriate contrast agents, especially for visualizing transplanted cells within host tissue. In recent years, compounds containing fluorine-19 have gained significant attention as MRI probe, particularly in dual 1H/19F-MR imaging. However, various factors affecting probe sensitivity, such as fluorine content and the equivalency of fluorine atoms, must be considered. In this study, we synthesized fluorinated micelles with adjustable surface positive charge density and investigated their physicochemical properties and MRI efficacy in phantoms and labeled cells. While the micelles exhibited clear signals in 19F-MR spectra and imaging, the concentrations required for MRI visualization of labeled cells were relatively high, adversely affecting cell viability. Despite their favourable physicochemical properties, achieving higher labeling rates without compromising cell viability during labeling remains a challenge for potential in vivo applications.
- Keywords
- 19F magnetic resonance imaging, 19F magnetic resonance spectroscopy, Cell labeling, Fluorinated micelles,
- MeSH
- Staining and Labeling methods MeSH
- Phantoms, Imaging MeSH
- Fluorine chemistry MeSH
- Halogenation MeSH
- Cations * chemistry MeSH
- Contrast Media chemistry MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Micelles * MeSH
- Mice MeSH
- Cell Survival * drug effects MeSH
- Fluorine-19 Magnetic Resonance Imaging methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fluorine MeSH
- Cations * MeSH
- Contrast Media MeSH
- Micelles * MeSH
Fluorine magnetic resonance imaging (19F MRI) is a rapidly evolving research area with a high potential to advance the field of clinical diagnostics. In this review, we provide an overview of the recent progress in the field of fluorinated stimuli-responsive polymers applied as 19F MRI tracers. These polymers respond to internal or external stimuli (e.g., temperature, pH, oxidative stress, and specific molecules) by altering their physicochemical properties, such as self-assembly, drug release, and polymer degradation. Incorporating noninvasive 19F labels enables us to track the biodistribution of such polymers. Furthermore, by triggering polymer transformation, we can induce changes in 19F MRI signals, including attenuation, amplification, and chemical shift changes, to monitor alterations in the environment of the tracer. Ultimately, this review highlights the emerging potential of stimuli-responsive fluoropolymer 19F MRI tracers in the current context of polymer diagnostics research.
- MeSH
- Stimuli Responsive Polymers chemistry MeSH
- Fluorine chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Contrast Media chemistry MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Polymers chemistry MeSH
- Fluorine-19 Magnetic Resonance Imaging * methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Stimuli Responsive Polymers MeSH
- Fluorine MeSH
- Contrast Media MeSH
- Polymers MeSH
19F magnetic resonance (19F MR) tracers stand out for their wide range of applications in experimental and clinical medicine, as they can be precisely located in living tissues with negligible fluorine background. This contribution demonstrates the long-term dissolution of multiresponsive fluorinated implants designed for prolonged release. Implants were detected for 14 (intramuscular injection) and 20 (subcutaneous injection) months by 19F MR at 4.7 T, showing favorable MR relaxation times, biochemical stability, biological compatibility and slow, long-term dissolution. Thus, polymeric implants may become a platform for long-term local theranostics.
- Publication type
- Journal Article MeSH
19F magnetic resonance imaging (MRI) using fluoropolymer tracers has recently emerged as a promising, non-invasive diagnostic tool in modern medicine. However, despite its potential, 19F MRI remains overlooked and underused due to the limited availability or unfavorable properties of fluorinated tracers. Herein, we report a straightforward synthetic route to highly fluorinated 19F MRI nanotracers via aqueous dispersion polymerization-induced self-assembly of a water-soluble fluorinated monomer. A polyethylene glycol-based macromolecular chain-transfer agent was extended by RAFT-mediated N-(2,2,2-trifluoroethyl)acrylamide (TFEAM) polymerization in water, providing fluorine-rich self-assembled nanoparticles in a single step. The resulting nanoparticles had different morphologies and sizes ranging from 60 to 220 nm. After optimizing their structure to maximize the magnetic relaxation of the fluorinated core, we obtained a strong 19F NMR/MRI signal in an aqueous environment. Their non-toxicity was confirmed on primary human dermal fibroblasts. Moreover, we visualized the nanoparticles by 19F MRI, both in vitro (in aqueous phantoms) and in vivo (after subcutaneous injection in mice), thus confirming their biomedical potential.
- MeSH
- Acrylamide MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Mice MeSH
- Nanoparticles * chemistry MeSH
- Polymerization MeSH
- Water * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acrylamide MeSH
- Water * MeSH
We constructed a sensor for the determination of Fe2+ and/or Fe3+ ions that consists of a polyaniline layer as an ion-to-electron transducer; on top of it, chelating molecules are deposited (which can selectively chelate specific ions) and protected with a non-biofouling poly(2-methyl-2-oxazoline)s layer. We have shown that our potentiometric sensing layers show a rapid response to the presence of Fe2+ or Fe3+ ions, do not experience interference with other ions (such as Cu2+), and work in a biological environment in the presence of bovine serum albumin (as a model serum protein). The sensing layers detect iron ions in the concentration range from 5 nM to 50 µM.
- Keywords
- analysis, non-biofouling layer, poly(2-methyl-2-oxazoline)s, potentiometry, sensor of Fe2+ or Fe3+ ions,
- MeSH
- Aniline Compounds MeSH
- Chelating Agents * MeSH
- Electrodes MeSH
- Ion-Selective Electrodes * MeSH
- Ions MeSH
- Hydrogen-Ion Concentration MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aniline Compounds MeSH
- Chelating Agents * MeSH
- Ions MeSH
- polyaniline MeSH Browser