Nejvíce citovaný článek - PubMed ID 35009087
Plant Responses to Biotic Stress: Old Memories Matter
Anthropogenic activities and subsequent global climate change instigate drastic crop productivity and yield changes. These changes comprise a rise in the number and severity of plant stress factors, which can arise simultaneously or sequentially. When abiotic stress factors are combined, their impact on plants is more substantial than that of a singleton stress factor. One such impact is the alteration of redox cellular homeostasis, which, in turn, can regulate downstream stress-responsive gene expression and resistance response. The epigenetic regulation of gene expression in response to varied stress factors is an interesting phenomenon, which, conversely, can be stable and heritable. The epigenetic control in plants in response to abiotic stress combinations and their interactions with cellular redox alteration is an emerging field to commemorate crop yield management under climate change. The article highlights the integration of the redox signaling pathways and epigenetic regulations as pivotal components in the complex network of plant responses against multi-combinatorial stresses across time and space. This review aims to lay the foundation for developing novel approaches to mitigate the impact of environmental stresses on crop productivity, bridging the gap between theoretical understanding and practical solutions in the face of a changing climate and anthropogenic disturbances.
- Klíčová slova
- abiotic stress, anthropogenic disturbances, crop resilience, epigenetic regulation, histone modification, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties.
- Klíčová slova
- Populus tremula, RT-qPCR, aphids, induced defence, reference gene analysis, spongy moth, transcriptome and metabolomics,
- MeSH
- býložravci * MeSH
- metabolom MeSH
- metabolomika metody MeSH
- mšice * fyziologie MeSH
- můry * fyziologie genetika MeSH
- Populus * genetika parazitologie metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Biotic stress tolerance in plants is complex as it relies solely on specific innate immune responses from different plant species combating diverse pathogens. Each component of the plant immune system is crucial to comprehend the molecular basis underlying sustainable resistance response. Among many other regulatory components, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have recently emerged as novel regulatory control switches in plant development and stress biology. Besides, miPs, the small peptides (100-150 amino acids long) encoded by some of the non-coding portions of the genome also turned out to be paramount regulators of plant stress. Although some studies have been performed in deciphering the role of miPs in abiotic stress tolerance, their function in regulating biotic stress tolerance is still largely elusive. Hence, the present review focuses on the roles of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in combating biotic stress in plants. The probable role of miPs in plant-microbe interaction is also comprehensively highlighted. This review enhances our current understanding of plant lncRNAs, circRNAs, and miPs in biotic stress tolerance and raises intriguing questions worth following up.
- Klíčová slova
- biotic stress, miPEPs, miRNA, micropeptides, plant–microbe interaction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The continuous use of herbicides for controlling weeds has led to the evolution of resistance to all major herbicidal modes of action globally. Every year, new cases of herbicide resistance are reported. Resistance is still in progress in many species, which must be stopped before it becomes a worldwide concern. Several herbicides are known to cause stressful conditions that resemble plant abiotic stresses. Variation in intracellular calcium (Ca2+) concentration is a primary event in a wide range of biological processes in plants, including adaptation to various biotic and abiotic stresses. Ca2+ acts as a secondary messenger, connecting various environmental stimuli to different biological processes, especially during stress rejoindering in plants. Even though many studies involving Ca2+ signalling in plants have been published, there have been no studies on the roles of Ca2+ signalling in herbicide stress response. Hence, this mini-review will highlight the possible sensing and molecular communication via Ca2+ signals in weeds under herbicide stress. It will also discuss some critical points regarding integrating the sensing mechanisms of multiple stress conditions and subsequent molecular communication. These signalling responses must be addressed in the future, enabling researchers to discover new herbicidal targets.
- Klíčová slova
- abiotic stress, calcium signalling, food security, herbicide resistance, weeds,
- Publikační typ
- časopisecké články MeSH
Plant immune response is fascinating due to the complete absence of a humoral system. The adaptive immune response in plants relies on the intracellular orchestration of signalling molecules or intermediates associated with transcriptional reprogramming. Plant disease response phenomena largely depend on pathogen recognition, signal perception, and intracellular signal transduction. The pathogens possess specific pathogen-associated molecular patterns (PAMP) or microbe-associated molecular patterns (MAMP), which are first identified by pattern recognition receptors (PRRs) of host plants for successful infection. After successful pathogen recognition, the defence response is initiated within plants. The first line of non-specific defence response is called PAMP-triggered immunity (PTI), followed by the specific robust signalling is called effector-triggered immunity (ETI). Calcium plays a crucial role in both PTI and ETI. The biphasic induction of reactive oxygen species (ROS) is inevitable in any plant-microbe interaction. Calcium ions play crucial roles in the initial oxidative burst and ROS induction. Different pathogens can induce calcium accumulation in the cytosol ([Ca2+]Cyt), called calcium signatures. These calcium signatures further control the diverse defence-responsive proteins in the intracellular milieu. These calcium signatures then activate calcium-dependent protein kinases (CDPKs), calcium calmodulins (CaMs), calcineurin B-like proteins (CBLs), etc., to impart intricate defence signalling within the cell. Decoding this calcium ionic map is imperative to unveil any plant microbe interplay and modulate defence-responsive pathways. Hence, the present review is unique in developing concepts of calcium signature in plants and their subsequent decoding mechanism. This review also intends to articulate early sensing of calcium oscillation, signalling events, and comprehensive mechanistic roles of calcium within plants during pathogenic ingression. This will accumulate and summarize the exciting roles of calcium ions in plant immunity and provide the foundation for future research.
- Klíčová slova
- ROS, biotic stress, calcium signalling, calcium-dependent proteins, defence signalling, plant-microbe interaction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Although herbicides have been successfully used for controlling weeds, their continuous use has developed in the evolution of resistance to all major herbicide modes of action worldwide. Reports suggest that the members of Poaceae family are more prone to developing herbicide resistance than other families. In plants, epigenetic mechanisms play critical roles by increasing their stress-adaptive potential in a rapidly changing environment. Epigenetic mechanisms involve alteration of the expression of genetic elements, but without any changes in the DNA sequence. Although the possible roles of epigenetic mechanisms in contributing to survival and fitness under various stresses are well documented in model plants and crops, their contribution to herbicide resistance in weeds is still in its infancy. A few studies with herbicides have shown differential expression of DNA methyltransferases, histone methyltransferases and DNA demethylases in response to the herbicides; however, no further studies were conducted. In the case of herbicide stress, exploring how these epigenetic processes affect the gene expression pattern in individual plants subjected to recurrent selection would be exciting. Hence, our mini-review will focus on the potential contributions of epigenetic mechanisms to the adaptive responses of grass-weedy species to herbicide stress. A better understanding of these epigenetic changes will add novel perceptions to our knowledge of herbicide resistance evolution in weeds enabling the development of herbicides with novel targets.
- Klíčová slova
- DNA methylation, abiotic stresses, epigenetic regulations, herbicide resistance, histone modification, phenotypic plasticity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH