Nejvíce citovaný článek - PubMed ID 36750574
Globally invariant metabolism but density-diversity mismatch in springtails
Fauna is highly abundant and diverse in soils worldwide, but surprisingly little is known about how it affects soil organic matter stabilization. Here, we review how the ecological strategies of a multitude of soil faunal taxa can affect the formation and persistence of labile (particulate organic matter, POM) and stabilized soil organic matter (mineral-associated organic matter, MAOM). We propose three major mechanisms - transformation, translocation, and grazing on microorganisms - by which soil fauna alters factors deemed essential in the formation of POM and MAOM, including the quantity and decomposability of organic matter, soil mineralogy, and the abundance, location, and composition of the microbial community. Determining the relevance of these mechanisms to POM and MAOM formation in cross-disciplinary studies that cover individual taxa and more complex faunal communities, and employ physical fractionation, isotopic, and microbiological approaches is essential to advance concepts, models, and policies focused on soil organic matter and effectively manage soils as carbon sinks, nutrient stores, and providers of food.
- MeSH
- ekosystém MeSH
- mikrobiota MeSH
- minerály chemie MeSH
- organické látky MeSH
- půda * chemie MeSH
- půdní mikrobiologie * MeSH
- uhlík chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- minerály MeSH
- organické látky MeSH
- půda * MeSH
- uhlík MeSH
Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.