Computational competitions are the standard for benchmarking medical image analysis algorithms, but they typically use small curated test datasets acquired at a few centers, leaving a gap to the reality of diverse multicentric patient data. To this end, the Federated Tumor Segmentation (FeTS) Challenge represents the paradigm for real-world algorithmic performance evaluation. The FeTS challenge is a competition to benchmark (i) federated learning aggregation algorithms and (ii) state-of-the-art segmentation algorithms, across multiple international sites. Weight aggregation and client selection techniques were compared using a multicentric brain tumor dataset in realistic federated learning simulations, yielding benefits for adaptive weight aggregation, and efficiency gains through client sampling. Quantitative performance evaluation of state-of-the-art segmentation algorithms on data distributed internationally across 32 institutions yielded good generalization on average, albeit the worst-case performance revealed data-specific modes of failure. Similar multi-site setups can help validate the real-world utility of healthcare AI algorithms in the future.
AI development in biotechnology relies on high-quality data to train and validate algorithms. The FAIR principles (Findable, Accessible, Interoperable, and Reusable) and regulatory frameworks such as the In Vitro Diagnostic Regulation (IVDR) and the Medical Device Regulation (MDR) specify requirements on specimen and data provenance to ensure the quality and traceability of data used in AI development. In this paper, a framework is presented for recording and publishing provenance information to meet these requirements. The framework is based on the use of standardized models and protocols, such as the W3C PROV model and the ISO 23494 series, to capture and record provenance information at various stages of the data generation and analysis process. The framework and use case illustrate the role of provenance information in supporting the development of high-quality AI algorithms in biotechnology. Finally, the principles of the framework are illustrated in a simple computational pathology use case, showing how specimen and data provenance can be used in the development and documentation of an AI algorithm. The use case demonstrates the importance of managing and integrating distributed provenance information and highlights the complex task of considering factors such as semantic interoperability, confidentiality, and the verification of authenticity and integrity.
- Keywords
- Artificial intelligence, Biological material, Provenance, Traceability,
- MeSH
- Algorithms * MeSH
- Biotechnology * MeSH
- Artificial Intelligence MeSH
- Publication type
- Journal Article MeSH
The study focuses on the utilization of artificial intelligence (AI) algorithms in the diagnosis of breast, lung, and prostate cancer. It describes the historical development of the digitalization of pathological processes, the implementation of artificial intelligence, and its current applications in pathology. The study emphasizes machine learning, deep learning, computer vision, and digital pathology, which contribute to the automation and refinement of diagnostics. Special attention is given to specific tools such as the uPath systems from Roche and IBEX Medical Analytics, which enable the analysis of histopathological images, tumor cell classification, and biomarker evaluation. The study also highlights the benefits of AI utilization, including increased diagnostic accuracy and efficiency in laboratory processes, while simultaneously addressing the challenges associated with its implementation, such as ethical and legal considerations, data protection, and liability for errors. The aim of this study is to provide a comprehensive overview of the potential applications of AI in digital pathology and its role in modern oncological diagnostics.
- Keywords
- AI Algorithms, artificial intelligence, breast cancer, lung cancer, prostate cancer,
- MeSH
- Algorithms * MeSH
- Humans MeSH
- Lung Neoplasms * diagnosis pathology MeSH
- Prostatic Neoplasms * diagnosis pathology MeSH
- Breast Neoplasms * diagnosis pathology MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The application of artificial intelligence (AI) in neurology is a growing field offering opportunities to improve accuracy of diagnosis and treatment of complicated neuronal disorders, plus fostering a deeper understanding of the aetiologies of these diseases through AI-based analyses of large omics data. The most common neurodegenerative disease, Alzheimer's disease (AD), is characterized by brain accumulation of specific pathological proteins, accompanied by cognitive impairment. In this review, we summarize the latest progress on the use of AI in different AD-related fields, such as analysis of neuroimaging data enabling early and accurate AD diagnosis; prediction of AD progression, identification of patients at higher risk and evaluation of new treatments; improvement of the evaluation of drug response using AI algorithms to analyze patient clinical and neuroimaging data; the development of personalized AD therapies; and the use of AI-based techniques to improve the quality of daily life of AD patients and their caregivers.
- MeSH
- Alzheimer Disease * diagnosis drug therapy metabolism MeSH
- Clinical Trials as Topic MeSH
- Humans MeSH
- Neuroimaging methods MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Nowadays, artificial intelligence (AI) affects our lives every single day and brings with it both benefits and risks for all spheres of human activities, including education. Out of these risks, the most striking seems to be ethical issues of the use of AI, such as misuse of private data or surveillance of people's lives. Therefore, the aim of this systematic review is to describe the key ethical issues related to the use of AI-driven mobile apps in education, as well as to list some of the implications based on the identified studies associated with this research topic. The methodology of this review study was based on the PRISMA guidelines for systematic reviews and meta-analyses. The results indicate four key ethical principles that should be followed, out of which the principle of algorithmovigilance should be considered in order to monitor, understand and prevent the adverse effects of algorithms in the use of AI in education. Furthermore, all stakeholders should be identified, as well as their joint engagement and collaboration to guarantee the ethical use of AI in education. Thus, the contribution of this study consists in emphasizing the need for joint cooperation and research of all stakeholders when using AI-driven mobile technologies in education with special attention to the ethical issues since the present research based on the review studies is scarce and neglected in this respect.
- Keywords
- artificial intelligence, education, ethical principles, ethics, mobile apps,
- MeSH
- Algorithms MeSH
- Humans MeSH
- Mobile Applications * MeSH
- Educational Status MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Systematic Review MeSH
A novel search principle for optimal feature subset selection using the Branch & Bound method is introduced. Thanks to a simple mechanism for predicting criterion values, a considerable amount of time can be saved by avoiding many slow criterion evaluations. We propose two implementations of the proposed prediction mechanism that are suitable for use with nonrecursive and recursive criterion forms, respectively. Both algorithms find the optimum usually several times faster than any other known Branch & Bound algorithm. As the algorithm computational efficiency is crucial, due to the exponential nature of the search problem, we also investigate other factors that affect the search performance of all Branch & Bound algorithms. Using a set of synthetic criteria, we show that the speed of the Branch & Bound algorithms strongly depends on the diversity among features, feature stability with respect to different subsets, and criterion function dependence on feature set size. We identify the scenarios where the search is accelerated the most dramatically (finish in linear time), as well as the worst conditions. We verify our conclusions experimentally on three real data sets using traditional probabilistic distance criteria.
The healthcare industry is transforming with the integration of the Internet of Medical Things (IoMT) with AI-powered networks for improved clinical connectivity and advanced monitoring capabilities. However, IoMT devices struggle with traditional network infrastructure due to complexity and eterogeneous. Software-defined networking (SDN) is a powerful solution for efficiently managing and controlling IoMT. Additionally, the integration of artificial intelligence such as Deep Learning (DL) algorithms brings intelligence and decision-making capabilities to SDN-IoMT systems. This study focuses on solving the serious problem of information imbalance in cardiotocography (CTG) characteristics with clinical data of pregnant women, especially fetal heart rate (FHR) and deceleration. To improve the performance of prenatal monitoring, this study proposes a framework using Generative Adversarial Networks (GAN), an advanced DL technique, with an auto-encoder model. FHR and deceleration are important markers in CTG monitoring, which are important for assessing fetal health and preventing complications or death. The proposed framework solves the data imbalance problem using reconstruction error and Wasserstein distance-based GANs. The performance of the model is assessed through simulations performed using Mininet, according to criteria such as accuracy, recall, precision and F1 score. The proposed framework outperforms both the basic and advanced DL models and achieves an effective accuracy of 94.2% and an F1 score of 21.1% in very small classes. Validation using the CTU-UHB dataset confirms the significance compared to state-of-the-art solutions for handling unbalanced CTG data. These findings highlight the potential of AI and SDN-based IoMT to improve prenatal outcomes.
- MeSH
- Algorithms MeSH
- Deep Learning MeSH
- Fetal Distress * diagnosis MeSH
- Internet of Things * MeSH
- Cardiotocography * methods MeSH
- Humans MeSH
- Fetal Monitoring * methods MeSH
- Neural Networks, Computer MeSH
- Heart Rate, Fetal physiology MeSH
- Pregnancy MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Detached off-grids, subject to the generated renewable energy (RE), need to balance and compensate the unstable power supply dependent on local source potential. Power quality (PQ) is a set of EU standards that state acceptable deviations in the parameters of electrical power systems to guarantee their operability without dropout. Optimization of the estimated PQ parameters in a day-horizon is essential in the operational planning of autonomous smart grids, which accommodate the norms for the specific equipment and user demands to avoid malfunctions. PQ data for all system states are not available for dozens of connected / switched on household appliances, defined by their binary load series only, as the number of combinations grows exponentially. The load characteristics and eventual RE contingent supply can result in system instability and unacceptable PQ events. Models, evolved by Artificial Intelligence (AI) methods using self-optimization algorithms, can estimate unknown cases and states in autonomous systems contingent on self-supply of RE power related to chaotic and intermitted local weather sources. A new multilevel extension procedure designed to incrementally improve the applicability and adaptability to training data. The initial AI model starts with binary load series only, which are insufficient to represent complex data patterns. The input vector is progressively extended with correlated PQ parameters at the next estimation level to better represent the active demand of the power consumer. Historical data sets comprise training samples for all PQ parameters, but only the load sequences of the switch-on appliances are available in the next estimation states. The most valuable PQ parameters are selected and estimated in the previous algorithm stages to be used as supplementary series in the next more precise computing. More complex models, using the previous PQ-data approximates, are formed at the secondary processing levels to estimate the target PQ-output in better quality. The new added input parameters allow us to evolve a more convenient model form. The proposed multilevel refinement algorithm can be generally applied in modelling of unknown sequence states of dynamical systems, initially described by binary series or other insufficient limited-data variables, which are inadequate in a problem representation. Most AI computing techniques can adapt this strategy to improve their adaptive learning and model performance.
This paper proposes a model called X-LSTM-EO, which integrates explainable artificial intelligence (XAI), long short-term memory (LSTM), and equilibrium optimizer (EO) to reliably forecast solar power generation. The LSTM component forecasts power generation rates based on environmental conditions, while the EO component optimizes the LSTM model's hyper-parameters through training. The XAI-based Local Interpretable and Model-independent Explanation (LIME) is adapted to identify the critical factors that influence the accuracy of the power generation forecasts model in smart solar systems. The effectiveness of the proposed X-LSTM-EO model is evaluated through the use of five metrics; R-squared (R2), root mean square error (RMSE), coefficient of variation (COV), mean absolute error (MAE), and efficiency coefficient (EC). The proposed model gains values 0.99, 0.46, 0.35, 0.229, and 0.95, for R2, RMSE, COV, MAE, and EC respectively. The results of this paper improve the performance of the original model's conventional LSTM, where the improvement rate is; 148%, 21%, 27%, 20%, 134% for R2, RMSE, COV, MAE, and EC respectively. The performance of LSTM is compared with other machine learning algorithm such as Decision tree (DT), Linear regression (LR) and Gradient Boosting. It was shown that the LSTM model worked better than DT and LR when the results were compared. Additionally, the PSO optimizer was employed instead of the EO optimizer to validate the outcomes, which further demonstrated the efficacy of the EO optimizer. The experimental results and simulations demonstrate that the proposed model can accurately estimate PV power generation in response to abrupt changes in power generation patterns. Moreover, the proposed model might assist in optimizing the operations of photovoltaic power units. The proposed model is implemented utilizing TensorFlow and Keras within the Google Collab environment.
- MeSH
- Algorithms MeSH
- Forecasting * methods MeSH
- Solar Energy * MeSH
- Models, Theoretical MeSH
- Artificial Intelligence * MeSH
- Environment MeSH
- Publication type
- Journal Article MeSH
Sepsis remains a leading cause of mortality worldwide, driven by its clinical complexity and delayed recognition. Artificial intelligence (AI) offers promising solutions to improve sepsis care through earlier detection, risk stratification, and personalized treatment strategies. Key applications include AI-driven early warning systems, subphenotyping based on clinical and biological data, and decision support tools that adapt to real-time patient information. The integration of diverse data types, such as structured clinical data, unstructured notes, waveform signals, and molecular biomarkers, enhances the precision and timeliness of interventions. However, challenges such as algorithmic bias, limited external validation, data quality issues, and ethical considerations continue to hinder clinical implementation. Future directions focus on real-time model adaptation, multi-omics integration, and the development of generalist medical AI capable of personalized recommendations. Successfully addressing these barriers is essential for AI to deliver on its potential to transform sepsis management and support the transition toward precision-driven critical care.
- Keywords
- Artificial intelligence, Clinical decision support, Early detection, Precision medicine, Sepsis management,
- MeSH
- Early Diagnosis * MeSH
- Precision Medicine methods trends MeSH
- Humans MeSH
- Sepsis * diagnosis therapy MeSH
- Artificial Intelligence * trends MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH