Cell structure Dotaz Zobrazit nápovědu
Multicellular structures formed by yeasts and other microbes are valuable models for investigating the processes of cell-cell interaction and pattern formation, as well as cell signaling and differentiation. These processes are essential for the organization and development of diverse microbial communities that are important in everyday life. Two major types of multicellular structures are formed by yeast Saccharomyces cerevisiae on semisolid agar. These are colonies formed by laboratory or domesticated strains and structured colony biofilms formed by wild strains. These structures differ in spatiotemporal organization and cellular differentiation. Using state-of-the-art microscopy and mutant analysis, we investigated the distribution of cells within colonies and colony biofilms and the involvement of specific processes therein. We show that prominent differences between colony and biofilm structure are determined during early stages of development and are associated with the different distribution of growing cells. Two distinct cell distribution patterns were identified-the zebra-type and the leopard-type, which are genetically determined. The role of Flo11p in cell adhesion and extracellular matrix production is essential for leopard-type distribution, because FLO11 deletion triggers the switch to zebra-type cell distribution. However, both types of cell organization are independent of cell budding polarity and cell separation as determined using respective mutants.
- Klíčová slova
- Flo11p adhesin, cell adhesion, cell organization, colonies and biofilms, laboratory and wild Saccharomyces cerevisiae strains, structure development, yeast multicellular structures,
- MeSH
- biofilmy * MeSH
- buněčné dělení MeSH
- membránové glykoproteiny genetika metabolismus MeSH
- mikrobiální interakce MeSH
- mutace MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae cytologie metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- FLO11 protein, S cerevisiae MeSH Prohlížeč
- membránové glykoproteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Here, we would like to point out important milestones in the study of nuclear radial positioning and gene expression during differentiation processes. In addition, changes in the histone signature that significantly precede various differentiation pathways are reviewed. We address the regulatory functions of chromatin structure and histone epigenetic marks that give rise to gene expression patterns that are specific to distinct differentiation pathways. The functional relevance of nuclear architecture and epigenetic traits is preferentially discussed in the context of in vitro induced enterocytic differentiation and pluripotent or differentiated embryonic stem cells. We especially focus on the recapitulation of nuclear events that have been characterized for some genes and proto-oncogenes that are important for development and differentiation.
- MeSH
- buněčná diferenciace MeSH
- chromatin chemie fyziologie MeSH
- embryonální kmenové buňky cytologie MeSH
- histony genetika metabolismus MeSH
- lidé MeSH
- pluripotentní kmenové buňky cytologie MeSH
- regulace genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chromatin MeSH
- histony MeSH
The stereotyped features of brain structure, such as the distribution, morphology and connectivity of neuronal cell types across brain areas, are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors. Recent advances in anatomical methods, including the simple but versatile isotropic fractionator and several whole-brain labeling, clearing and microscopy methods, have opened the door to an exciting new era in comparative brain anatomy, one that has the potential to transform our understanding of the brain structure-function relationship by representing the evolution of brain complexity in quantitative anatomical features shared across species and species-specific or clade-specific. Here we discuss these methods and their application to mapping brain cell count and cell type distributions-two particularly powerful neural correlates of vertebrate cognitive and behavioral capabilities.
- MeSH
- druhová specificita MeSH
- mapování mozku * MeSH
- mozek * MeSH
- neurony MeSH
- počet buněk MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses.IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections.
- Klíčová slova
- Apis mellifera, Cripavirus, Dicistroviridae, Picornavirales, Triatovirus, X ray, X-ray crystallography, capsid, crystallography, honey bee, honeybee, insect disease, structure, virion, virus,
- MeSH
- Dicistroviridae ultrastruktura MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- včely virologie MeSH
- virion ultrastruktura MeSH
- virové plášťové proteiny chemie MeSH
- virové struktury MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové plášťové proteiny MeSH
Biological age is typically estimated using biomarkers whose states have been observed to correlate with chronological age. A persistent limitation of such aging clocks is that it is difficult to establish how the biomarker states are related to the mechanisms of aging. Somatic mutations could potentially form the basis for a more fundamental aging clock since the mutations are both markers and drivers of aging and have a natural timescale. Cell lineage trees inferred from these mutations reflect the somatic evolutionary process, and thus, it has been conjectured, the aging status of the body. Such a timer has been impractical thus far, however, because detection of somatic variants in single cells presents a significant technological challenge. Here, we show that somatic mutations detected using single-cell RNA sequencing (scRNA-seq) from thousands of cells can be used to construct a cell lineage tree whose structure correlates with chronological age. De novo single-nucleotide variants (SNVs) are detected in human peripheral blood mononuclear cells using a modified protocol. A default model based on penalized multiple regression of chronological age on 31 metrics characterizing the phylogenetic tree gives a Pearson correlation of 0.81 and a median absolute error of ~4 years between predicted and chronological ages. Testing of the model on a public scRNA-seq dataset yields a Pearson correlation of 0.85. In addition, cell tree age predictions are found to be better predictors of certain clinical biomarkers than chronological age alone, for instance glucose, albumin levels, and leukocyte count. The geometry of the cell lineage tree records the structure of somatic evolution in the individual and represents a new modality of aging timer. In addition to providing a numerical estimate of "cell tree age," it unveils a temporal history of the aging process, revealing how clonal structure evolves over life span. Cell Tree Rings complements existing aging clocks and may help reduce the current uncertainty in the assessment of geroprotective trials.
- Klíčová slova
- Biological age, Cell Tree Rings, Geroprotective trials,
- MeSH
- biologické markery MeSH
- dlouhověkost MeSH
- fylogeneze MeSH
- leukocyty mononukleární * MeSH
- lidé MeSH
- stárnutí * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
Interactions between C-type lectin-like NK cell receptors and their protein ligands form one of the key recognition mechanisms of the innate immune system that is involved in the elimination of cells that have been malignantly transformed, virally infected, or stressed by chemotherapy or other factors. We determined an x-ray structure for the extracellular domain of mouse C-type lectin related (Clr) protein g, a ligand for the activation receptor NKR-P1F. Clr-g forms dimers in the crystal structure resembling those of human CD69. This newly reported structure, together with the previously determined structure of mouse receptor NKR-P1A, allowed the modeling and calculations of electrostatic profiles for other closely related receptors and ligands. Despite the high similarity among Clr-g, Clr-b, and human CD69, these molecules have fundamentally different electrostatics, with distinct polarization of Clr-g. The electrostatic profile of NKR-P1F is complementary to that of Clr-g, which suggests a plausible interaction mechanism based on contacts between surface sites of opposite potential.
- MeSH
- CD antigeny chemie imunologie MeSH
- diferenciační antigeny T-lymfocytů chemie imunologie MeSH
- krystalografie rentgenová MeSH
- lektiny typu C chemie imunologie MeSH
- lidé MeSH
- ligandy MeSH
- membránové proteiny chemie imunologie MeSH
- myši MeSH
- receptory imunologické chemie imunologie MeSH
- statická elektřina MeSH
- strukturní homologie proteinů MeSH
- terciární struktura proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CD antigeny MeSH
- CD69 antigen MeSH Prohlížeč
- Dcl1 protein, mouse MeSH Prohlížeč
- diferenciační antigeny T-lymfocytů MeSH
- lektiny typu C MeSH
- ligandy MeSH
- membránové proteiny MeSH
- Nkrp1f protein, mouse MeSH Prohlížeč
- receptory imunologické MeSH
Nuclear matrix or nucleoskeleton is thought to provide structural basis for intranuclear order. However, the nature of this structure is still uncertain because of numerous technical difficulties in its visualization. To reveal the "real" morphology of the nucleoskeleton, and to identify possible sources of structural artifacts, three methods of nucleoskeleton preparations were compared. The nucleoskeleton visualized by all these techniques consists of identical elements: nuclear lamina and an inner network comprising core filaments and the "diffuse" nucleoskeleton. We then tested if the nucleoskeleton is a stable structure or a transient transcription-dependent structure. Incubation with transcription inhibitors (alpha-amanitin, actinomycin D, and DRB) for various periods of time had no obvious effect on the morphology of the nucleoskeleton. A typical nucleoskeleton structure was observed also in a physiological model-in transcriptionally inactive mouse 2-cell embryos and in active 8- to 16-cell embryos. Our data suggest that the nucleoskeleton is a permanent structure of the cell nucleus regardless of the nuclear transcriptional state, and the principal architecture of the nucleoskeleton is identical throughout the interphase.
- MeSH
- amanitiny farmakologie MeSH
- buněčné jádro účinky léků ultrastruktura MeSH
- daktinomycin farmakologie MeSH
- embryonální a fetální vývoj MeSH
- genetická transkripce * MeSH
- HeLa buňky MeSH
- inhibitory syntézy nukleových kyselin farmakologie MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši inbrední DBA MeSH
- myši MeSH
- RNA-polymerasa II antagonisté a inhibitory MeSH
- RNA-polymerasa III antagonisté a inhibitory MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amanitiny MeSH
- daktinomycin MeSH
- inhibitory syntézy nukleových kyselin MeSH
- RNA-polymerasa II MeSH
- RNA-polymerasa III MeSH
The spatial arrangement of some genetic elements relative to chromosome territories and in parallel with the cell nucleus was investigated in human lymphocytes. The structure of the chromosome territories was studied in chromosomes containing regions (clusters) of highly expressed genes (HSA 9, 17) and those without such clusters (HSA 8, 13). In chromosomes containing highly expressed regions, the elements pertaining to these regions were found close to the centre of the nucleus on the inner sides of chromosome territories; those pertaining to regions with low expression were localized close to the nuclear membrane on the opposite sides of the territories. In chromosomes with generally low expression (HSA 8, 13), the elements investigated were found symmetrically distributed over the territories. Based on the investigations of the chromosome structure, the following conclusions are suggested: (1) Chromosome territories have a non-random internal 3D structure with defined average mutual positions between elements. For example, RARalpha, TP53 and Iso-q of HSA 17 are nearer to each other than they are to the HSA 17 centromere. (2) The structure of a chromosome territory reflects the number and chromosome location of clusters of highly expressed genes. (3) Chromosome territories behave to some extent as solid bodies: if the territory is found closer to the nuclear centre, the individual genetic elements of this chromosome are also found, on average, closer the centre of the nucleus. (4) The positions of centromeres are, on average, nearer to the fluorescence weight centre of the territory (FWCT) than to genes. (5) Active genes are not found near the centromeres of their own territory. A simple model of the structure of chromosome territory is proposed.
- MeSH
- buněčné jádro genetika MeSH
- centromera genetika MeSH
- euchromatin genetika MeSH
- geny MeSH
- heterochromatin genetika MeSH
- hybridizace in situ fluorescenční MeSH
- jaderný obal genetika MeSH
- kompartmentace buňky MeSH
- lidé MeSH
- lidské chromozomy, pár 17 ultrastruktura MeSH
- lidské chromozomy ultrastruktura MeSH
- lymfocyty diagnostické zobrazování MeSH
- metoda Monte Carlo MeSH
- modely genetické MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu MeSH
- ultrasonografie MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- euchromatin MeSH
- heterochromatin MeSH
Fungal cell walls possess a characteristic chemical composition differentiating fungal cells from other cell types. For this reason, the mechanisms involved in cell-wall formation represent a potential target for selective antifungal drugs. Understanding the structure and biosynthesis of fungal cell walls opens the ways for design of effective drugs for treating fungal diseases. This article reviews the history methods employed in chemical and structural analysis of fungal cell walls and in studies concerning their formation.
SDF-1, a novel cytokine from alpha-chemokine family, plays a key role in regulation of haematopoiesis. It exists in two forms (alpha and beta) that originate from alternative splicing. Its high expression in the bone marrow microenvironment accounts for the release of progenitor cells in the circulation and represents a prevention of uncontrolled leak of CD34+ cells. Notably significant is its stimulation of proliferation of B-lineage progenitors, in other haematopoietic lineages it functions as a facilitating factor of other cytokines. Ability of induction of platelet aggregation reveals the role of SDF-1 in thrombogenesis and vascular lumen obliteration in vessels affected by atherosclerosis. The only receptor for SDF-1 is CXCR4, whose presence was proved in great numbers of tissues and organs. Their presence was also verified in brain tumours, whereas degree of their expression raises with grading, angiogenesis and occurrence of necrotic changes in tumour. Thanks to this feature it will probably be possible to estimate the prognosis of the patients. SDF-1 is also a suppressor of immune response via its facilitating activity on the interaction of the macrophages and CD8+ T lymphocytes. Affinity of the T-lymphocytotropic HIV to CXCR4 holds out hopes for a possible modulation of the infection with SDF-1. The significance of SDF-1 and its receptor CXCR4 is supported by morphological and functional abnormalities of new-born mice in their absence, especially disorders in haematopoiesis, angiogenesis and development of cardiac and nervous tissues.
- MeSH
- B-lymfocyty metabolismus MeSH
- buňky stromatu metabolismus MeSH
- chemokin CXCL12 MeSH
- chemokiny CXC chemie fyziologie MeSH
- hematopoéza fyziologie MeSH
- hemostáza fyziologie MeSH
- HIV infekce virologie MeSH
- kmenové buňky metabolismus MeSH
- lidé MeSH
- receptory CXCR4 fyziologie MeSH
- T-lymfocyty imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chemokin CXCL12 MeSH
- chemokiny CXC MeSH
- CXCL12 protein, human MeSH Prohlížeč
- receptory CXCR4 MeSH