Functional monomers
Dotaz
Zobrazit nápovědu
The polarity of (poly)methacrylate monolithic capillary columns was varied by using alkylmethacrylate monomers with butyl, cyclohexyl, 2-ethylhexyl, lauryl, and stearyl functional groups in the polymerization mixture. The hydrodynamic properties, as well as the retention characteristics in RP-LC of small molecules (alkylbenzenes) and of proteins under gradient elution conditions were studied. The RP selectivity depends on the type of alkyl chain in methacrylate monomer; however, there was no direct correlation between the size of the monomer molecule and methylene or aromatic selectivity of the monlithic column. The lowest selectivity was found for column based on lauryl methacrylate monomer. On the other hand, butyl methacrylate column shows high phenyl selectivity and the column with stearyl methacrylate possesses the highest methylene selectivity for small molecules. The retention increases with longer alkyl chain in methacrylate monomer, especially for high molar mass proteins on all prepared columns and showed gradient elution behavior of proteins in agreement with the linear solvent strength gradient model. The poly(laurylmethacrylate) column showed lowest hydrophobicity but best efficiency for proteins of all columns tested.
- Klíčová slova
- Efficiency, Functional monomers, Polarity, Polymethacrylate monolithic columns, Proteins,
- MeSH
- kyseliny polymethakrylové chemie MeSH
- organické látky chemie izolace a purifikace MeSH
- proteiny chemie izolace a purifikace MeSH
- vysokoúčinná kapalinová chromatografie přístrojové vybavení metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny polymethakrylové MeSH
- organické látky MeSH
- polymethacrylic acid MeSH Prohlížeč
- proteiny MeSH
The chain coordination polymerization of (ethynylarene)carbaldehydes with unprotected carbaldehyde groups, namely ethynylbenzaldehydes, 1-ethynylbenzene-3,5-dicarboxaldehyde, and 3-[(4-ethynylphenyl)ethynyl]benzaldehyde, is reported for the first time. Polymerization is catalyzed with various Rh(I) catalysts and yields poly(arylacetylene)s with one or two pendant carbaldehyde groups per monomeric unit. Surprisingly, the carbaldehyde groups of the monomers do not inhibit the polymerization unlike the carbaldehyde group of unsubstituted benzaldehyde that acts as a strong inhibitor of Rh(I) catalyzed polymerization of arylacetylenes. The inhibition ability of carbaldehyde groups in (ethynylarene)carbaldehydes seems to be eliminated owing to a simultaneous presence of unsaturated ethynyl groups in (ethynylarene)carbaldehydes. The reactive carbaldehyde groups make poly[(ethynylarene)carbaldehyde]s promising for functional appreciation via various postpolymerization modifications. The introduction of photoluminescence or chirality to poly(ethynylbenzaldehyde)s via quantitative modification of their carbaldehyde groups in reaction with either photoluminescent or chiral primary amines under formation of the polymers with Schiff-base-type pendant groups is given as an example.
- Klíčová slova
- Rh catalysts, ethynylbenzaldehydes, inhibition of polymerization, polyacetylenes, postpolymerization modification,
- MeSH
- aldehydy chemie MeSH
- benzaldehydy chemie MeSH
- chemické modely MeSH
- fluorescenční spektrometrie MeSH
- katalýza MeSH
- molekulární struktura MeSH
- polyacetyleny chemická syntéza chemie MeSH
- polymerizace * MeSH
- polymery chemická syntéza chemie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldehydy MeSH
- benzaldehydy MeSH
- ethynylbenzaldehyde MeSH Prohlížeč
- polyacetyleny MeSH
- polymery MeSH
Self-assembled nanotubes exhibit impressive biological functions that have always inspired supramolecular scientists in their efforts to develop strategies to build such structures from small molecules through a bottom-up approach. One of these strategies employs molecules endowed with self-recognizing motifs at the edges, which can undergo either cyclization-stacking or folding-polymerization processes that lead to tubular architectures. Which of these self-assembly pathways is ultimately selected by these molecules is, however, often difficult to predict and even to evaluate experimentally. We show here a unique example of two structurally related molecules substituted with complementary nucleobases at the edges (i.e., G:C and A:U) for which the supramolecular pathway taken is determined by chelate cooperativity, that is, by their propensity to assemble in specific cyclic structures through Watson-Crick pairing. Because of chelate cooperativities that differ in several orders of magnitude, these molecules exhibit distinct supramolecular scenarios prior to their polymerization that generate self-assembled nanotubes with different internal monomer arrangements, either stacked or coiled, which lead at the same time to opposite helicities and chiroptical properties.
- Publikační typ
- časopisecké články MeSH
It has been recognized that the C-H⋯O structural motif can be present in destabilizing as well as highly stabilizing intermolecular environments. Thus, it should be of interest to describe the strength of the C-H⋯O hydrogen bond for constant structural factors so that this intrinsic strength can be quantified and compared to other types of interactions. This description is provided here for C2h-symmetric dimers of acrylic acid by means of the calculations that employ the coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)] together with an extrapolation to the complete basis set (CBS) limit. Dimers featuring the C-H⋯O and O-H⋯O hydrogens bonds are carefully investigated in a wide range of intermolecular separations by the CCSD(T)/CBS approach, and also by the symmetry-adapted perturbation theory (SAPT) method, which is based on the density-functional theory (DFT) treatment of monomers. While the nature of these two types of hydrogen bonding is very similar according to the SAPT-DFT/CBS calculations and on the basis of a comparison of the intermolecular potential curves, the intrinsic strength of the C-H⋯O interaction is found to be about a quarter of its O-H⋯O counterpart that is less than one might anticipate.
- Klíčová slova
- CCSD(T), DFT, SAPT, hydrogen bonding, noncovalent interactions,
- MeSH
- polymery * MeSH
- teorie funkcionálu hustoty MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polymery * MeSH
This study provides a comprehensive investigation of the structural and vibrational properties of protonated cytosine monomers and dimers. Experimental IRPD spectroscopy, combined with theoretical calculations, revealed distinct behaviors for monomers and dimers. We find that protonated cytosine monomers predominantly adopt the enol form in the gas phase, with a contribution from the keto form between 25% and 33%. For dimers, our computations predict a keto-enol configuration to be more stable than the keto-keto form by 1.5 kcal mol-1. However, experimentally, the keto-keto form emerged as the dominant structure. The theoretically most stable keto-enol configuration undergoes a structural reorganization in MD simulations with explicit methanol, forming the dynamically unstable neutral-keto-protonated-keto complex. This reorganization highlights the role of environmental factors in modulating tautomer populations.
- MeSH
- cytosin * chemie MeSH
- dimerizace MeSH
- DNA * chemie MeSH
- simulace molekulární dynamiky MeSH
- spektrofotometrie infračervená MeSH
- teorie funkcionálu hustoty MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytosin * MeSH
- DNA * MeSH
Though tetrapyrazinoporphyrazines (TPyzPzs) are generally presented as universal dark quenchers for oligonucleotide probes, the availability of TPyzPzs bearing different functional groups suitable for attachment to 3', and 5' ends or intrastrand positions remains rather limited. Therefore, a synthetic route to hexa(bis(2-methoxyethyl)amino) or hexa(diethylamino) TPyzPzs functionalized by an azide, hydroxy, or carboxy group or their combinations was developed. Studies of self-assembly into J-dimers in nonpolar solvents and their stability upon titration with pyridine (association constants, KP values, ranging 0.32-12.7×102 M-1 ) revealed that smaller peripheral substituents and functionalization of TPyzPzs improves the stability of J-dimers. ΦΔ and ΦF were low for the monomers (ΦF <0.0001, ΦΔ <0.008, DMF) due to quenching by intramolecular charge transfer; however, they increased in nonpolar solvents and after self-assembly into J-dimer (up to ΦF =0.027, ΦΔ =0.28).
- Klíčová slova
- aggregation, fluorescence, oligonucleotide probes, phthalocyanines, self-assembly,
- MeSH
- azidy chemie MeSH
- biosenzitivní techniky MeSH
- dimerizace MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční spektrometrie MeSH
- komplexní sloučeniny chemie MeSH
- ligandy MeSH
- molekulární konformace MeSH
- porfyriny chemická syntéza MeSH
- pyridiny chemie MeSH
- rozpouštědla chemie MeSH
- rozpustnost MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- azidy MeSH
- fluorescenční barviva MeSH
- komplexní sloučeniny MeSH
- ligandy MeSH
- porfyriny MeSH
- pyridine MeSH Prohlížeč
- pyridiny MeSH
- rozpouštědla MeSH
A systematic theoretical study on several models of Zn(II) complexes has been carried out employing both ab initio correlated wave function and density functional methods. The performance of five different functionals namely PW91, PBE, B3LYP, MPWLYP1M, and TPSS in the prediction of metal-ligand bond distances, binding energies, and proton affinities has been assessed comparing the results to those obtained with the MP2 and CCSD(T) wave function methodologies. Several basis sets ranging from double-ζ up to quintuple-ζ quality have been used, including the recently developed all-electron correlation consistent basis sets for zinc. It is shown that all the tested functionals overestimate both the metal-ligand bond distances and the binding energies, being that the B3LYP and TPSS functionals are the ones that perform the best. An analysis of the metal-ligand interaction energy shows that induction and charge-transfer effects play a prominent role in the bonding of these systems, even for those complexes with the less polarizable ligands. This finding highlights the importance of a correct description of the polarization of the monomers' charge densities by any theoretical method which aims to be applied to the study of Zn(II) complexes.
- Publikační typ
- časopisecké články MeSH
In addition to their force-generating motor domains, kinesin motor proteins feature various accessory domains enabling them to fulfill a variety of functions in the cell. Human kinesin-3, Kif14, localizes to the midbody of the mitotic spindle and is involved in the progression of cytokinesis. The specific motor properties enabling Kif14's cellular functions, however, remain unknown. Here, we show in vitro that the intrinsically disordered N-terminal domain of Kif14 enables unique functional diversity of the kinesin. Using single molecule TIRF microscopy, we found that Kif14 exists either as a diffusible monomer or as processive dimer and that the disordered domain (1) enables diffusibility of the monomeric Kif14, (2) renders the dimeric Kif14 super-processive and enables the kinesin to pass through highly crowded areas, (3) enables robust, autonomous Kif14 tracking of growing microtubule tips, independent of microtubule end-binding (EB) proteins, and (4) is sufficient to enable crosslinking of parallel microtubules and necessary to enable Kif14-driven sliding of antiparallel ones. We explain these features of Kif14 by the observed diffusible interaction of the disordered domain with the microtubule lattice and the observed increased affinity of the disordered domain for GTP-bound tubulin. We suggest that the disordered domain tethers the motor domain to the microtubule providing a diffusible foothold and a regulatory hub, tuning the kinesin's interaction with microtubules. Our findings thus exemplify pliable protein tethering as a fundamental mechanism of molecular motor regulation.
- Klíčová slova
- Kif14, disordered domain, kinesin-3, microtubule sliding, microtubule tip tracking, microtubules, molecular motors, super-processivity, tethering,
- MeSH
- aparát dělícího vřeténka fyziologie MeSH
- cytokineze * MeSH
- kineziny chemie genetika metabolismus MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- onkogenní proteiny chemie genetika metabolismus MeSH
- vazba proteinů MeSH
- vnitřně neuspořádané proteiny chemie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- KIF14 protein, human MeSH Prohlížeč
- kineziny MeSH
- onkogenní proteiny MeSH
- vnitřně neuspořádané proteiny MeSH
With the aim to study the influence of monomer ratio in poly(high internal phase emulsions) (polyHIPEs) on the polymer network architecture and morphology of poly(vinylbenzyl chloride-co-divinylbenzene-co-styrene) after hypercrosslinking via the internal Friedel-Crafts process, polyHIPEs with 80% overall porosity were prepared at three different initial crosslinking degrees, namely 2, 5, and 10 mol.%. All had typical interconnected cellular morphology, which was not affected by the hypercrosslinking process. Nitrogen adsorption and desorption experiments with BET and t-plot modelling were used for the evaluation of the newly introduced nanoporosity and in combination with elemental analysis for the evaluation of the extent of the hypercrosslinking. It was found that, for all three initial crosslinking degrees, the minimum amount of functional monomer, 4-vinylbenzyl chloride, was approximately 30 mol.%. Hypercrosslinking of polymers with lower concentrations of functional monomer did not result in induction of nanoporosity while the initial crosslinking degree had a much lower impact on the formation of nanoporosity.
- Klíčová slova
- hierarchically porous polymers, hypercrosslinking, macroporosity, nanoporosity, poly(4-vinylbenzyl chloride), polyHIPE,
- Publikační typ
- časopisecké články MeSH
Ionization in the condensed phase and molecular clusters leads to a complicated chain of processes with coupled electron-nuclear dynamics. It is difficult to describe such dynamics with conventional nonadiabatic molecular dynamics schemes since the number of states swiftly increases as the molecular system grows. It is therefore attractive to use a direct electron and nuclear propagation such as the real-time time-dependent density functional theory (RT-TDDFT). Here we report a RT-TDDFT benchmark study on simulations of singly and doubly ionized states of a water monomer and dimer as a prototype for more complex processes in a condensed phase. We employed the RT-TDDFT based Ehrenfest molecular dynamics with a generalized gradient approximate (GGA) functional and compared it with wave-function-based surface hopping (SH) simulations. We found that the initial dynamics of a singly HOMO ionized water dimer is similar for both the RT-TDDFT/GGA and the SH simulations but leads to completely different reaction channels on a longer time scale. This failure is attributed to the self-interaction error in the GGA functionals and it can be avoided by using hybrid functionals with large fraction of exact exchange (represented here by the BHandHLYP functional). The simulations of doubly ionized states are reasonably described already at the GGA level. This suggests that the RT-TDDFT/GGA method could describe processes following the autoionization processes such as Auger emission, while its applicability to more complex processes such as intermolecular Coulombic decay remains limited.
- Publikační typ
- časopisecké články MeSH