MRE11 protein, human OR C121766 Dotaz Zobrazit nápovědu
MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin. They also abrogate double-strand break repair mechanisms that rely on MRE11 nuclease activity, without impairing ATM activation. Inhibition of MRE11 also impairs nascent strand degradation of stalled replication forks and selectively affects BRCA2-deficient cells. Herein, we illustrate that our newly discovered compounds MU147 and MU1409 can be used as chemical probes to further explore the biological role of MRE11 and support the potential clinical relevance of pharmacological inhibition of this nuclease.
- Klíčová slova
- BRCA2, FEN1, MRE11 inhibitor, nuclease,
- MeSH
- homologní protein MRE11 * metabolismus antagonisté a inhibitory MeSH
- inhibitory enzymů * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- objevování léků MeSH
- oprava DNA účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- homologní protein MRE11 * MeSH
- inhibitory enzymů * MeSH
- MRE11 protein, human MeSH Prohlížeč
The MRE11, RAD50, and NBN genes encode for the nuclear MRN protein complex, which senses the DNA double strand breaks and initiates the DNA repair. The MRN complex also participates in the activation of ATM kinase, which coordinates DNA repair with the p53-dependent cell cycle checkpoint arrest. Carriers of homozygous germline pathogenic variants in the MRN complex genes or compound heterozygotes develop phenotypically distinct rare autosomal recessive syndromes characterized by chromosomal instability and neurological symptoms. Heterozygous germline alterations in the MRN complex genes have been associated with a poorly-specified predisposition to various cancer types. Somatic alterations in the MRN complex genes may represent valuable predictive and prognostic biomarkers in cancer patients. MRN complex genes have been targeted in several next-generation sequencing panels for cancer and neurological disorders, but interpretation of the identified alterations is challenging due to the complexity of MRN complex function in the DNA damage response. In this review, we outline the structural characteristics of the MRE11, RAD50 and NBN proteins, the assembly and functions of the MRN complex from the perspective of clinical interpretation of germline and somatic alterations in the MRE11, RAD50 and NBN genes.
- Klíčová slova
- ATLD, DNA repair, MRE11, NBN, NBS, NBSLD, NGS, RAD50, TP53, hereditary cancer syndromes, variant interpretation,
- MeSH
- ATM protein genetika metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- enzymy opravy DNA genetika metabolismus MeSH
- homologní protein MRE11 genetika metabolismus MeSH
- hydrolasy působící na anhydridy kyselin genetika metabolismus MeSH
- jaderné proteiny genetika metabolismus MeSH
- lidé MeSH
- nádorové supresorové proteiny * genetika MeSH
- oprava DNA genetika MeSH
- proteiny buněčného cyklu * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ATM protein MeSH
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- homologní protein MRE11 MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- jaderné proteiny MeSH
- nádorové supresorové proteiny * MeSH
- NBN protein, human MeSH Prohlížeč
- proteiny buněčného cyklu * MeSH
- RAD50 protein, human MeSH Prohlížeč
The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.
- Klíčová slova
- MRE11, NBN, RAD50, germline variants, meta‐analysis,
- MeSH
- DNA vazebné proteiny genetika MeSH
- enzymy opravy DNA genetika MeSH
- genetická predispozice k nemoci * MeSH
- homologní protein MRE11 * genetika MeSH
- hydrolasy působící na anhydridy kyselin * genetika MeSH
- jaderné proteiny * genetika MeSH
- lidé MeSH
- nádory * genetika MeSH
- proteiny buněčného cyklu * genetika MeSH
- zárodečné mutace * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- homologní protein MRE11 * MeSH
- hydrolasy působící na anhydridy kyselin * MeSH
- jaderné proteiny * MeSH
- MRE11 protein, human MeSH Prohlížeč
- NBN protein, human MeSH Prohlížeč
- proteiny buněčného cyklu * MeSH
- RAD50 protein, human MeSH Prohlížeč
Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability.
- Klíčová slova
- Brca2, DNA replication, Mre11, Rad51, Xenopus laevis, fork protection,
- MeSH
- časové faktory MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- DNA-helikasy genetika metabolismus MeSH
- DNA-polymerasa I metabolismus MeSH
- DNA-polymerasa III metabolismus MeSH
- DNA biosyntéza genetika MeSH
- endodeoxyribonukleasy genetika metabolismus MeSH
- exodeoxyribonukleasy genetika metabolismus MeSH
- homologní protein MRE11 MeSH
- lidé MeSH
- mutace MeSH
- nestabilita genomu MeSH
- protein BRCA2 genetika metabolismus MeSH
- proteiny Xenopus genetika metabolismus MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- replikace DNA * MeSH
- replikační počátek MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Xenopus laevis genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA-helikasy MeSH
- DNA-polymerasa I MeSH
- DNA-polymerasa III MeSH
- DNA MeSH
- endodeoxyribonukleasy MeSH
- exodeoxyribonukleasy MeSH
- homologní protein MRE11 MeSH
- MRE11 protein, human MeSH Prohlížeč
- MRE11 protein, S cerevisiae MeSH Prohlížeč
- protein BRCA2 MeSH
- proteiny Xenopus MeSH
- RAD51 protein, human MeSH Prohlížeč
- RAD51 protein, Xenopus MeSH Prohlížeč
- rekombinasa Rad51 MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- SMARCAL1 protein, human MeSH Prohlížeč
B-Myb, a highly conserved member of the Myb transcription factor family, is expressed ubiquitously in proliferating cells and controls the cell cycle dependent transcription of G2/M-phase genes. Deregulation of B-Myb has been implicated in oncogenesis and loss of genomic stability. We have identified B-Myb as a novel interaction partner of the Mre11-Rad50-Nbs1 (MRN) complex, a key player in the repair of DNA double strand breaks. We show that B-Myb directly interacts with the Nbs1 subunit of the MRN complex and is recruited transiently to DNA-damage sites. In response to DNA-damage B-Myb is phosphorylated by protein kinase GSK3β and released from the MRN complex. A B-Myb mutant that cannot be phosphorylated by GSK3β disturbs the regulation of pro-mitotic B-Myb target genes and leads to inappropriate mitotic entry in response to DNA-damage. Overall, our work suggests a novel function of B-Myb in the cellular DNA-damage signalling.
- MeSH
- ATM protein metabolismus MeSH
- biologické modely MeSH
- buněčné linie MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- dvouřetězcové zlomy DNA MeSH
- enzymy opravy DNA chemie metabolismus MeSH
- fosforylace MeSH
- GSK3B metabolismus MeSH
- homologní protein MRE11 chemie metabolismus MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- interakční proteinové domény a motivy MeSH
- jaderné proteiny chemie metabolismus MeSH
- lidé MeSH
- mitóza genetika MeSH
- multiproteinové komplexy metabolismus MeSH
- mutace MeSH
- oprava DNA MeSH
- poškození DNA * MeSH
- proteiny buněčného cyklu chemie genetika metabolismus MeSH
- regulace genové exprese MeSH
- sekvence aminokyselin MeSH
- signální transdukce * MeSH
- trans-aktivátory chemie genetika metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATM protein MeSH
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- GSK3B MeSH
- homologní protein MRE11 MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- jaderné proteiny MeSH
- multiproteinové komplexy MeSH
- MYBL2 protein, human MeSH Prohlížeč
- NBN protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- RAD50 protein, human MeSH Prohlížeč
- trans-aktivátory MeSH
The MRN (MRE11-RAD50-NBS1) complex is essential for repair of DNA double-strand breaks and stalled replication forks. Mutations of the MRN complex subunit MRE11 cause the hereditary cancer-susceptibility disease ataxia-telangiectasia-like disorder (ATLD). Here we show that MRE11 directly interacts with PIH1D1, a subunit of heat-shock protein 90 cochaperone R2TP complex, which is required for the assembly of large protein complexes, such as RNA polymerase II, small nucleolar ribonucleoproteins and mammalian target of rapamycin complex 1. The MRE11-PIH1D1 interaction is dependent on casein kinase 2 (CK2) phosphorylation of two acidic sequences within the MRE11 C terminus containing serines 558/561 and 688/689. Conversely, the PIH1D1 phospho-binding domain PIH-N is required for association with MRE11 phosphorylated by CK2. Consistent with these findings, depletion of PIH1D1 resulted in MRE11 destabilization and affected DNA-damage repair processes dependent on MRE11. Additionally, mutations of serines 688/689, which abolish PIH1D1 binding, also resulted in decreased MRE11 stability. As depletion of R2TP frequently leads to instability of its substrates and as truncation mutation of MRE11 lacking serines 688/689 leads to decreased levels of the MRN complex both in ATLD patients and an ATLD mouse model, our results suggest that the MRN complex is a novel R2TP complex substrate and that their interaction is regulated by CK2 phosphorylation.
- MeSH
- ATM protein metabolismus MeSH
- buněčné jádro metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- enzymy opravy DNA metabolismus MeSH
- fosforylace fyziologie MeSH
- jaderné proteiny metabolismus MeSH
- kaseinkinasa II metabolismus MeSH
- lidé MeSH
- mutace fyziologie MeSH
- myši MeSH
- oprava DNA fyziologie MeSH
- poškození DNA fyziologie MeSH
- proteiny regulující apoptózu metabolismus MeSH
- proteiny tepelného šoku metabolismus MeSH
- ribonukleoproteiny malé jadérkové metabolismus MeSH
- RNA-polymerasa II metabolismus MeSH
- serin metabolismus MeSH
- teleangiektatická ataxie metabolismus MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- vazba proteinů fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ATM protein MeSH
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- jaderné proteiny MeSH
- kaseinkinasa II MeSH
- proteiny regulující apoptózu MeSH
- proteiny tepelného šoku MeSH
- ribonukleoproteiny malé jadérkové MeSH
- RNA-polymerasa II MeSH
- serin MeSH
- TOR serin-threoninkinasy MeSH
The 5'-3' resection of DNA ends is a prerequisite for the repair of DNA double strand breaks by homologous recombination, microhomology-mediated end joining, and single strand annealing. Recent studies in yeast have shown that, following initial DNA end processing by the Mre11-Rad50-Xrs2 complex and Sae2, the extension of resection tracts is mediated either by exonuclease 1 or by combined activities of the RecQ family DNA helicase Sgs1 and the helicase/endonuclease Dna2. Although human DNA2 has been shown to cooperate with the BLM helicase to catalyze the resection of DNA ends, it remains a matter of debate whether another human RecQ helicase, WRN, can substitute for BLM in DNA2-catalyzed resection. Here we present evidence that WRN and BLM act epistatically with DNA2 to promote the long-range resection of double strand break ends in human cells. Our biochemical experiments show that WRN and DNA2 interact physically and coordinate their enzymatic activities to mediate 5'-3' DNA end resection in a reaction dependent on RPA. In addition, we present in vitro and in vivo data suggesting that BLM promotes DNA end resection as part of the BLM-TOPOIIIα-RMI1-RMI2 complex. Our study provides new mechanistic insights into the process of DNA end resection in mammalian cells.
- Klíčová slova
- DNA Damage, DNA Helicase, DNA Recombination, DNA Repair, Genomic Instability, RecQ,
- MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- DNA-helikasy genetika metabolismus MeSH
- DNA genetika metabolismus MeSH
- dvouřetězcové zlomy DNA * MeSH
- enzymy opravy DNA genetika metabolismus MeSH
- exodeoxyribonukleasy genetika metabolismus MeSH
- genetická epistáze fyziologie MeSH
- HEK293 buňky MeSH
- helikasy RecQ genetika metabolismus MeSH
- helikáza Wernerova syndromu MeSH
- homologní protein MRE11 MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- lidé MeSH
- multienzymové komplexy genetika metabolismus MeSH
- ubikvitin aktivující enzymy genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Bloom syndrome protein MeSH Prohlížeč
- DNA vazebné proteiny MeSH
- DNA-helikasy MeSH
- DNA MeSH
- DNA2 protein, human MeSH Prohlížeč
- enzymy opravy DNA MeSH
- exodeoxyribonukleasy MeSH
- helikasy RecQ MeSH
- helikáza Wernerova syndromu MeSH
- homologní protein MRE11 MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- MRE11 protein, human MeSH Prohlížeč
- multienzymové komplexy MeSH
- RAD50 protein, human MeSH Prohlížeč
- UBA2 protein, human MeSH Prohlížeč
- ubikvitin aktivující enzymy MeSH
- WRN protein, human MeSH Prohlížeč
Fanconi anemia (FA) is a genetic disorder characterized by a defect in DNA interstrand crosslink (ICL) repair, chromosomal instability, and a predisposition to cancer. Recently, two RAD51 mutations were reported to cause an FA-like phenotype. Despite the tight association of FA/HR proteins with replication fork (RF) stabilization during normal replication, it remains unknown how FA-associated RAD51 mutations affect replication beyond ICL lesions. Here, we report that these mutations fail to protect nascent DNA from MRE11-mediated degradation during RF stalling in Xenopus laevis egg extracts. Reconstitution of DNA protection in vitro revealed that the defect arises directly due to altered RAD51 properties. Both mutations induce pronounced structural changes and RAD51 filament destabilization that is not rescued by prevention of ATP hydrolysis due to aberrant ATP binding. Our results further interconnect the FA pathway with DNA replication and provide mechanistic insight into the role of RAD51 in recombination-independent mechanisms of genome maintenance.
- Klíčová slova
- Fanconi anemia, RAD51, recombination, replication,
- MeSH
- adenosintrifosfát metabolismus MeSH
- Fanconiho anemie genetika MeSH
- homologní protein MRE11 metabolismus MeSH
- lidé MeSH
- mutace * MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- replikace DNA * MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- Xenopus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- homologní protein MRE11 MeSH
- MRE11 protein, human MeSH Prohlížeč
- RAD51 protein, human MeSH Prohlížeč
- rekombinasa Rad51 MeSH
SAMHD1 was previously characterized as a dNTPase that protects cells from viral infections. Mutations in SAMHD1 are implicated in cancer development and in a severe congenital inflammatory disease known as Aicardi-Goutières syndrome. The mechanism by which SAMHD1 protects against cancer and chronic inflammation is unknown. Here we show that SAMHD1 promotes degradation of nascent DNA at stalled replication forks in human cell lines by stimulating the exonuclease activity of MRE11. This function activates the ATR-CHK1 checkpoint and allows the forks to restart replication. In SAMHD1-depleted cells, single-stranded DNA fragments are released from stalled forks and accumulate in the cytosol, where they activate the cGAS-STING pathway to induce expression of pro-inflammatory type I interferons. SAMHD1 is thus an important player in the replication stress response, which prevents chronic inflammation by limiting the release of single-stranded DNA from stalled replication forks.
- MeSH
- checkpoint kinasa 1 metabolismus MeSH
- cytosol metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- helikasy RecQ metabolismus MeSH
- homologní protein MRE11 metabolismus MeSH
- interferon typ I imunologie metabolismus MeSH
- jednovláknová DNA metabolismus MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- nukleotidyltransferasy metabolismus MeSH
- protein SAMHD1 nedostatek metabolismus MeSH
- replikace DNA * MeSH
- zánět imunologie metabolismus prevence a kontrola MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cGAS protein, human MeSH Prohlížeč
- checkpoint kinasa 1 MeSH
- CHEK1 protein, human MeSH Prohlížeč
- helikasy RecQ MeSH
- homologní protein MRE11 MeSH
- interferon typ I MeSH
- jednovláknová DNA MeSH
- membránové proteiny MeSH
- MRE11 protein, human MeSH Prohlížeč
- nukleotidyltransferasy MeSH
- protein SAMHD1 MeSH
- RECQL protein, human MeSH Prohlížeč
- SAMHD1 protein, human MeSH Prohlížeč
- STING1 protein, human MeSH Prohlížeč
A growing body of evidence supports the notion that cancer resistance is driven by a small subset of cancer stem cells (CSC), responsible for tumor initiation, growth, and metastasis. Both CSC and chemoresistant cancer cells may share common qualities to activate a series of self-defense mechanisms against chemotherapeutic drugs. Here, we aimed to identify proteins in chemoresistant triple-negative breast cancer (TNBC) cells and corresponding CSC-like spheroid cells that may contribute to their resistance. We have identified several candidate proteins representing the subfamilies of DNA damage response (DDR) system, the ATP-binding cassette, and the 26S proteasome degradation machinery. We have also demonstrated that both cell types exhibit enhanced DDR when compared to corresponding parental counterparts, and identified RAD50 as one of the major contributors in the resistance phenotype. Finally, we have provided evidence that depleting or blocking RAD50 within the Mre11-Rad50-NBS1 (MRN) complex resensitizes CSC and chemoresistant TNBC cells to chemotherapeutic drugs.
- Klíčová slova
- DNA damage repair, RAD50, cancer stem cells, chemoresistance, triple-negative breast cancer,
- MeSH
- chemorezistence účinky léků genetika MeSH
- cisplatina aplikace a dávkování MeSH
- cyklofosfamid aplikace a dávkování MeSH
- DNA vazebné proteiny genetika MeSH
- doxorubicin aplikace a dávkování MeSH
- enzymy opravy DNA genetika MeSH
- homologní protein MRE11 genetika MeSH
- hydrolasy působící na anhydridy kyselin genetika MeSH
- jaderné proteiny genetika MeSH
- lidé MeSH
- nádorové kmenové buňky účinky léků metabolismus MeSH
- poškození DNA účinky léků MeSH
- přežití po terapii bez příznaků nemoci MeSH
- proteiny buněčného cyklu genetika MeSH
- triple-negativní karcinom prsu farmakoterapie genetika MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cisplatina MeSH
- cyklofosfamid MeSH
- DNA vazebné proteiny MeSH
- doxorubicin MeSH
- enzymy opravy DNA MeSH
- homologní protein MRE11 MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- jaderné proteiny MeSH
- MRE11 protein, human MeSH Prohlížeč
- NBN protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- RAD50 protein, human MeSH Prohlížeč