Neural stem cell
Dotaz
Zobrazit nápovědu
Neurodegenerative diseases are devastating disorders and the demands on their treatment are set to rise in connection with higher disease incidence. Knowledge of the spatiotemporal profile of cellular protein expression during neural differentiation and definition of a set of markers highly specific for targeted neural populations is a key challenge. Intracellular proteins may be utilized as a readout for follow-up transplantation and cell surface proteins may facilitate isolation of the cell subpopulations, while secreted proteins could help unravel intercellular communication and immunomodulation. This review summarizes the potential of proteomics in revealing molecular mechanisms underlying neural differentiation of stem cells and presents novel candidate proteins of neural subpopulations, where understanding of their functionality may accelerate transition to cell replacement therapies.
- Klíčová slova
- cell therapy, immunomodulation, neural stem cell differentiation, neural subpopulation, neurodegenerative disease, population-specific protein-expression signature, quantitative mass spectrometry, selected reaction monitoring,
- MeSH
- lidé MeSH
- nervové kmenové buňky cytologie metabolismus transplantace MeSH
- neurodegenerativní nemoci metabolismus terapie MeSH
- neurogeneze * MeSH
- proteom metabolismus MeSH
- transplantace kmenových buněk MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- proteom MeSH
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer's disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
- Klíčová slova
- Alzheimer’s disease, Astrocytes, Cerebral organoids, In vitro differentiation, Microglia, Neural differentiation, Neural progenitors, Neural stem cells, Neurons, iPSCs,
- MeSH
- Alzheimerova nemoc * genetika metabolismus terapie MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- lidé MeSH
- nervové kmenové buňky * metabolismus MeSH
- neurony metabolismus MeSH
- organoidy patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The involvement of microRNAs (miRNAs) in orchestrating self-renewal and differentiation of stem cells has been revealed in a number of recent studies. And while in human pluripotent stem cells, miRNAs have been directly linked to the core pluripotency network, including the cell cycle regulation and the maintenance of the self-renewing capacity, their role in the onset of differentiation in other contexts, such as determination of neural cell fate, remains poorly described. To bridge this gap, we used three model cell types to study miRNA expression patterns: human embryonic stem cells (hESCs), hESCs-derived self-renewing neural stem cells (NSCs), and differentiating NSCs. The comprehensive miRNA profiling presented here reveals novel sets of miRNAs differentially expressed during human neural cell fate determination in vitro. Furthermore, we report a miRNA expression profile of self-renewing human NSCs, which has been lacking to this date. Our data also indicates that miRNA clusters enriched in NSCs share the target-determining seed sequence with cell cycle regulatory miRNAs expressed in pluripotent hESCs. Lastly, our mechanistic experiments confirmed that cluster miR-17-92, one of the NSCs-enriched clusters, is directly transcriptionally regulated by transcription factor c-MYC.
- Klíčová slova
- Cell cycle, Human pluripotent stem cells, Neural stem cells, miRNA sequencing, microRNA,
- MeSH
- buněčná diferenciace genetika MeSH
- embryonální kmenové buňky MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nervové kmenové buňky * metabolismus MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA * MeSH
The unique properties of stem cells to self-renew and differentiate hold great promise in disease modelling and regenerative medicine. However, more information about basic stem cell biology and thorough characterization of available stem cell lines is needed. This is especially essential to ensure safety before any possible clinical use of stem cells or partially committed cell lines. As proteins are the key effector molecules in the cell, the proteomic characterization of cell lines, cell compartments or cell secretome and microenvironment is highly beneficial to answer above mentioned questions. Nowadays, method of choice for large-scale discovery-based proteomic analysis is mass spectrometry (MS) with data-independent acquisition (DIA). DIA is a robust, highly reproducible, high-throughput quantitative MS approach that enables relative quantification of thousands of proteins in one sample. In the current protocol, we describe a specific variant of DIA known as SWATH-MS for characterization of neural stem cell differentiation. The protocol covers the whole process from cell culture, sample preparation for MS analysis, the SWATH-MS data acquisition on TTOF 5600, the complete SWATH-MS data processing and quality control using Skyline software and the basic statistical analysis in R and MSstats package. The protocol for SWATH-MS data acquisition and analysis can be easily adapted to other samples amenable to MS-based proteomics.
- Klíčová slova
- Data independent acquisition, Mass spectrometry, Neural differentiation, Neural stem cell, Proteomics, SWATH-MS, Skyline, Spectral library,
- MeSH
- buněčná diferenciace MeSH
- hmotnostní spektrometrie metody MeSH
- lidé MeSH
- nervové kmenové buňky * chemie metabolismus MeSH
- proteom analýza MeSH
- proteomika * metody MeSH
- řízení kvality MeSH
- software * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
BACKGROUND: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. METHODS: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. RESULTS: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2-6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. CONCLUSIONS: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.
- Klíčová slova
- Amyotrophic lateral sclerosis (ALS), Bioinformatic tools to study xenografts, Human embryonic stem cell (hESC), Neural stem cell (NSC), Spinal cord, Spinal traumatic injury,
- MeSH
- buněčné linie MeSH
- lidé MeSH
- multipotentní kmenové buňky cytologie MeSH
- nervové kmenové buňky cytologie MeSH
- průtoková cytometrie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Damaged neural tissue is regenerated by neural stem cells (NSCs), which represent a rare and difficult-to-culture cell population. Therefore, alternative sources of stem cells are being tested to replace a shortage of NSCs. Here we show that mouse adipose tissue-derived mesenchymal stem cells (MSCs) can be effectively differentiated into cells expressing neuronal cell markers. The differentiation protocol, simulating the inflammatory site of neural injury, involved brain tissue extract, fibroblast growth factor, epidermal growth factor, supernatant from activated splenocytes and electrical stimulation under physiological conditions. MSCs differentiated using this protocol displayed neuronal cell morphology and expressed genes for neuronal cell markers, such as neurofilament light (Nf-L), medium (Nf-M) and heavy (Nf-H) polypeptides, synaptophysin (SYP), neural cell adhesion molecule (NCAM), glutamic acid decarboxylase (GAD), neuron-specific nuclear protein (NeuN), βIII-tubulin (Tubb3) and microtubule-associated protein 2 (Mtap2), which are absent (Nf-L, Nf-H, SYP, GAD, NeuN and Mtap2) or only slightly expressed (NCAM, Tubb3 and Nf-M) in undifferentiated cells. The differentiation was further enhanced when the cells were cultured on nanofibre scaffolds. The neural differentiation of MSCs, which was detected at the level of gene expression, was confirmed by positive immunostaining for Nf-L protein. The results thus show that the simulation of conditions in an injured neural tissue and inflammatory environment, supplemented with electrical stimulation under physiological conditions and cultivation of cells on a three-dimensional (3D) nanofibre scaffold, form an effective protocol for the differentiation of MSCs into cells with neuronal markers. Copyright © 2015 John Wiley & Sons, Ltd.
- Klíčová slova
- adipose-derived mesenchymal stem cells, electrical stimulation, mouse, nanofibre scaffold, neural differentiation, neural injury,
- MeSH
- buněčná diferenciace * MeSH
- diferenciační antigeny biosyntéza MeSH
- mezenchymální kmenové buňky metabolismus patologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nervová tkáň metabolismus patologie MeSH
- nervové kmenové buňky metabolismus patologie MeSH
- zánět metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diferenciační antigeny MeSH
Induced pluripotent stem (iPS) cells are derived from differentiated cells by different reprogramming techniques, by introducing specific transcription factors responsible for pluripotency. Induced pluripotent stem cells can serve as an excellent source for differentiated neural stem/progenitor cells (NSCs/NPs). Several methods and protocols are utilized to create a robust number of NSCs/NPs without jeopardizing the safety issues required for in vivo applications. A variety of disease-specific iPS cells have been used to study nervous system diseases. In this chapter, we will focus on some of the derivation and differentiation approaches and the application of iPS-NPs in the treatment of spinal cord injury and stroke.
- Klíčová slova
- Induced pluripotent stem cells, Neural stem cells, Neuronal differentiation, Spinal cord injury, Stroke,
- MeSH
- buněčná diferenciace * MeSH
- cévní mozková příhoda patologie terapie MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- lidé MeSH
- modely neurologické * MeSH
- nervové kmenové buňky cytologie MeSH
- poranění míchy patologie terapie MeSH
- přeprogramování buněk MeSH
- transkripční faktory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- transkripční faktory MeSH
Embryonic neural stem cells (NSCs), comprising neuroepithelial and radial glial cells, are indispensable precursors of neurons and glia in the mammalian developing brain. Since the process of neurogenesis occurs in a hypoxic environment, the question arises of how NSCs deal with low oxygen tension and whether it affects their stemness. Genes from the hypoxia-inducible factors (HIF) family are well known factors governing cellular response to hypoxic conditions. In this study, we have discovered that the endogenous stabilization of hypoxia-inducible factor 1α (Hif1α) during neural induction is critical for the normal development of the NSCs pool by preventing its premature depletion and differentiation. The knock-out of the Hif1α gene in mESC-derived neurospheres led to a decrease in self-renewal of NSCs, paralleled by an increase in neuronal differentiation. Similarly, neuroepithelial cells differentiated in hypoxia exhibited accelerated neurogenesis soon after Hif1α knock-down. In both models, the loss of Hif1α was accompanied by an immediate drop in neural repressor Hes1 levels while changes in Notch signaling were not observed. We found that active Hif1α/Arnt1 transcription complex bound to the evolutionarily conserved site in Hes1 gene promoter in both neuroepithelial cells and neural tissue of E8.5 - 9.5 embryos. Taken together, these results emphasize the novel role of Hif1α in the regulation of early NSCs population through the activation of neural repressor Hes1, independently of Notch signaling.
- Klíčová slova
- Hes1, Hif1α, Hypoxia, Neural stem cell, Neuroepithelium, Notch,
- MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- hypoxie MeSH
- nervové kmenové buňky * MeSH
- neurogeneze MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates that these neural progenitors retain responsiveness to instructive cues revealing the robust applicability of the protocol in the treatment of different neurodegenerative diseases. The fact that this protocol includes animal-free medium and human extracellular matrix components avoiding embryoid bodies makes this protocol suitable for the use in clinic. Stem Cells Translational Medicine 2017;6:1217-1226.
- Klíčová slova
- Cellular therapy, Clinical translation, Differentiation, Embryonic stem cells, Induced pluripotent stem cells, Neural differentiation, Pluripotent stem cells,
- MeSH
- buněčná a tkáňová terapie MeSH
- buněčná diferenciace fyziologie MeSH
- embryonální kmenové buňky fyziologie MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- pluripotentní kmenové buňky cytologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Human induced pluripotent stem cell-derived neural stem/progenitor cells are used in cell-replacement and regenerative therapeutic strategies after traumatic central nervous system injury. Traumatic injury alters the host microenvironment, which in turn affects the functionality of transplanted human neural stem/ progenitor cells and potentially limits their benefits for neurorepair. However, the underlying mechanisms through which the host environment alters the fate and functionality of transplanted human neural stem/progenitor cells remain poorly understood. Here, we showed that massive deposition of blood-derived fibrinogen in a mouse model of spinal cord injury contributed to an altered lesion environment. Fibrinogen promoted human neural stem/progenitor cell differentiation into reactive astrocytes by activating the BMP receptor signaling pathway and inducing of the transcriptional regulator inhibitor of DNA binding 3. ID3 -depleted human neural stem/progenitor cells, generated by CRISPR/Cas9-mediated genome editing, reduced astrocyte formation in response to astrogenic stimuli. Instead, ID3 -depleted human neural stem/progenitor cells had a bipolar, immature glial progenitor cell phenotype. These modified cells secreted extracellular vesicles with a distinct miRNA profile that enhanced neurite outgrowth. We conclude that targeting inhibitor of DNA binding 3 in human neural stem/progenitor cells can beneficially modulate their functionality and cell fate in the injured central nervous system toward glial progenitor cells, potentially enhancing their capacity to promote central nervous system repair.