iPSCs Dotaz Zobrazit nápovědu
In the past, several animal disease models were developed to study the molecular mechanism of neurological diseases and discover new therapies, but the lack of equivalent animal models has minimized the success rate. A number of critical issues remain unresolved, such as high costs for developing animal models, ethical issues, and lack of resemblance with human disease. Due to poor initial screening and assessment of the molecules, more than 90% of drugs fail during the final step of the human clinical trial. To overcome these limitations, a new approach has been developed based on induced pluripotent stem cells (iPSCs). The discovery of iPSCs has provided a new roadmap for clinical translation research and regeneration therapy. In this article, we discuss the potential role of patient-derived iPSCs in neurological diseases and their contribution to scientific and clinical research for developing disease models and for developing a roadmap for future medicine. The contribution of humaniPSCs in the most common neurodegenerative diseases (e.g., Parkinson's disease and Alzheimer's disease, diabetic neuropathy, stroke, and spinal cord injury) were examined and ranked as per their published literature on PUBMED. We have observed that Parkinson's disease scored highest, followed by Alzheimer's disease. Furthermore, we also explored recent advancements in the field of personalized medicine, such as the patient-on-a-chip concept, where iPSCs can be grown on 3D matrices inside microfluidic devices to create an in vitro disease model for personalized medicine.
- Klíčová slova
- Alzheimer’s disease, Parkinson’s disease, diabetic neuropathy, induced pluripotent stem cells (iPSCs), personalized medicine, spinal cord injury,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The incidence and the burden of cardiovascular disease (CVD), coronary heart disease (CHD), type 2 diabetes mellitus (T2DM), and the metabolic syndrome are greatly increasing in our societies. Together, they account for 31% of all deaths worldwide. This chapter focuses on the role of two revolutionary discoveries that are changing the future of medicine, induced pluripotent stem cells (iPSCs) and CRISPR/Cas9 technology, in the study, and the cure of cardiovascular and metabolic diseases.We summarize the state-of-the-art knowledge about the possibility of editing iPSC genome for therapeutic applications without hampering their pluripotency and differentiation, using CRISPR/Cas technology, in the field of cardiovascular and metabolic diseases.
- Klíčová slova
- Cardiovascular, Epigenetics, Gene editing, Induced pluripotent stem cells (iPSC), Metabolism,
- MeSH
- diabetes mellitus 2. typu * genetika terapie MeSH
- editace genu MeSH
- indukované pluripotentní kmenové buňky * MeSH
- kardiovaskulární systém * MeSH
- lidé MeSH
- metabolické nemoci * genetika terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A human induced pluripotent stem cell line was generated from cancer-associated fibroblasts of a 68-years old patient with diagnosed prostate adenocarcinoma (PCa). The fibroblast cell line was reprogrammed with Epi5™ Episomal iPSC Reprogramming Kit. Pluripotency of the derived transgene-free iPS cell line was confirmed both in vitro by detecting expression of factors of pluripotency on a single-cell level, and also in vivo using teratoma formation assay. This new iPS cell line may be used for differentiation into different prostate-specific cell types in differentiation studies.
- MeSH
- fibroblasty asociované s nádorem metabolismus MeSH
- fibroblasty metabolismus MeSH
- indukované pluripotentní kmenové buňky metabolismus MeSH
- lidé MeSH
- nádory prostaty genetika MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
Human induced pluripotent stem cell line was generated from commercially available primary human prostate fibroblasts HPrF derived from a fetus, aged 18-24 weeks of gestation. The fibroblast cell line was reprogrammed with Yamanaka factors (OCT4, SOX2, c-MYC, KLF4) using CytoTune™-iPS 2.0 Sendai Reprogramming Kit. Pluripotency of the derived transgene-free iPS cell line was confirmed both in vitro by detecting the expression of factors of pluripotency on a single-cell level, and in vivo using teratoma formation assay. This iPS cell line will be a useful tool for studying both normal prostate development and prostate cancer disease.
- MeSH
- fibroblasty * cytologie metabolismus MeSH
- indukované pluripotentní kmenové buňky * cytologie metabolismus MeSH
- Krüppel-like faktor 4 MeSH
- lidé MeSH
- plod * cytologie embryologie MeSH
- přeprogramování buněk MeSH
- prostata * cytologie embryologie MeSH
- techniky buněčného přeprogramování * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
DNA damage repair (DDR) is a safeguard for genome integrity maintenance. Increasing DDR efficiency could increase the yield of induced pluripotent stem cells (iPSC) upon reprogramming from somatic cells. The epigenetic mechanisms governing DDR during iPSC reprogramming are not completely understood. Our goal was to evaluate the splicing isoforms of histone variant macroH2A1, macroH2A1.1, and macroH2A1.2, as potential regulators of DDR during iPSC reprogramming. GFP-Trap one-step isolation of mtagGFP-macroH2A1.1 or mtagGFP-macroH2A1.2 fusion proteins from overexpressing human cell lines, followed by liquid chromatography-tandem mass spectrometry analysis, uncovered macroH2A1.1 exclusive interaction with Poly-ADP Ribose Polymerase 1 (PARP1) and X-ray cross-complementing protein 1 (XRCC1). MacroH2A1.1 overexpression in U2OS-GFP reporter cells enhanced specifically nonhomologous end joining (NHEJ) repair pathway, while macroH2A1.1 knock-out (KO) mice showed an impaired DDR capacity. The exclusive interaction of macroH2A1.1, but not macroH2A1.2, with PARP1/XRCC1, was confirmed in human umbilical vein endothelial cells (HUVEC) undergoing reprogramming into iPSC through episomal vectors. In HUVEC, macroH2A1.1 overexpression activated transcriptional programs that enhanced DDR and reprogramming. Consistently, macroH2A1.1 but not macroH2A1.2 overexpression improved iPSC reprogramming. We propose the macroH2A1 splicing isoform macroH2A1.1 as a promising epigenetic target to improve iPSC genome stability and therapeutic potential.
- Klíčová slova
- DNA damage, cell reprogramming, induced pluripotent stem cells, macroH2A1.1,
- MeSH
- DNA MeSH
- endoteliální buňky metabolismus MeSH
- histony * metabolismus MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- lidé MeSH
- myši MeSH
- oprava DNA MeSH
- protein XRCC1 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- histony * MeSH
- MACROH2A1 protein, human MeSH Prohlížeč
- protein XRCC1 MeSH
- XRCC1 protein, human MeSH Prohlížeč
The critical requirements in developing clinical-grade human-induced pluripotent stem cells-derived neural precursors (hiPSCs-NPCs) are defined by expandability, genetic stability, predictable in vivo post-grafting differentiation, and acceptable safety profile. Here, we report on the use of manual-selection protocol for generating expandable and stable human NPCs from induced pluripotent stem cells. The hiPSCs were generated by the reprogramming of peripheral blood mononuclear cells with Sendai-virus (SeV) vector encoding Yamanaka factors. After induction of neural rosettes, morphologically defined NPC colonies were manually harvested, re-plated, and expanded for up to 20 passages. Established NPCs showed normal karyotype, expression of typical NPCs markers at the proliferative stage, and ability to generate functional, calcium oscillating GABAergic or glutamatergic neurons after in vitro differentiation. Grafted NPCs into the striatum or spinal cord of immunodeficient rats showed progressive maturation and expression of early and late human-specific neuronal and glial markers at 2 or 6 months post-grafting. No tumor formation was seen in NPCs-grafted brain or spinal cord samples. These data demonstrate the effective use of in vitro manual-selection protocol to generate safe and expandable NPCs from hiPSCs cells. This protocol has the potential to be used to generate GMP (Good Manufacturing Practice)-grade NPCs from hiPSCs for future clinical use.
- Klíčová slova
- brain grafting, human-induced pluripotent stem cells (hiPSCs), immunodeficient rat, manual selection, neural precursor cells (NPCs), spinal cord grafting,
- MeSH
- buněčná diferenciace MeSH
- indukované pluripotentní kmenové buňky * MeSH
- krysa rodu Rattus MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- nervové kmenové buňky * MeSH
- neurony metabolismus MeSH
- virus Sendai genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer's disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
- Klíčová slova
- Alzheimer’s disease, Astrocytes, Cerebral organoids, In vitro differentiation, Microglia, Neural differentiation, Neural progenitors, Neural stem cells, Neurons, iPSCs,
- MeSH
- Alzheimerova nemoc * genetika metabolismus terapie MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- lidé MeSH
- nervové kmenové buňky * metabolismus MeSH
- neurony metabolismus MeSH
- organoidy patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Aim: Human induced pluripotent stem cells (iPSCs) are inefficiently derived from somatic cells by overexpression of defined transcription factors. Overexpression of H2A histone variant macroH2A1.1, but not macroH2A1.2, leads to increased iPSC reprogramming by unclear mechanisms. Materials & methods: Cleavage under targets and tagmentation (CUT&Tag) allows robust epigenomic profiling of a low cell number. We performed an integrative CUT&Tag-RNA-Seq analysis of macroH2A1-dependent orchestration of iPSCs reprogramming using human endothelial cells. Results: We demonstrate wider genome occupancy, predicted transcription factors binding, and gene expression regulated by macroH2A1.1 during reprogramming, compared to macroH2A1.2. MacroH2A1.1, previously associated with neurodegenerative pathologies, specifically activated ectoderm/neural processes. Conclusion: CUT&Tag and RNA-Seq data integration is a powerful tool to investigate the epigenetic mechanisms occurring during cell reprogramming.
- Klíčová slova
- CUT&Tag, iPSCs, induced pluripotent stem cells, macroH2A1, reprogramming, somatic cells,
- MeSH
- endoteliální buňky metabolismus MeSH
- histony * metabolismus MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- lidé MeSH
- přeprogramování buněk genetika MeSH
- sekvenování transkriptomu MeSH
- transkripční faktory genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony * MeSH
- transkripční faktory MeSH
Significance: Since their discovery, induced pluripotent stem cells (iPSCs) had generated considerable interest in the scientific community for their great potential in regenerative medicine, disease modeling, and cell-based therapeutic approach, due to their unique characteristics of self-renewal and pluripotency. Recent Advances: Technological advances in iPSC genome-wide epigenetic profiling led to the elucidation of the epigenetic control of cellular identity during nuclear reprogramming. Moreover, iPSC physiology and metabolism are tightly regulated by oxidation-reduction events that mainly occur during the respiratory chain. In theory, iPSC-derived differentiated cells would be ideal for stem cell transplantation as autologous cells from donors, as the risks of rejection are minimal. Critical Issues: However, iPSCs experience high oxidative stress that, in turn, confers a high risk of increased genomic instability, which is most often linked to DNA repair deficiencies. Genomic instability has to be assessed before iPSCs can be used in therapeutic designs. Future Directions: This review will particularly focus on the links between redox balance and epigenetic modifications-in particular based on the histone variant macroH2A1-that determine DNA damage response in iPSCs and derived differentiated cells, and that might be exploited to decrease the teratogenic potential on iPSC transplantation. Antioxid. Redox Signal. 34, 335-349.
- Klíčová slova
- DNA damage, histone variant macroH2A1, induced pluripotent stem cells (iPSCs), oxidative stress,
- MeSH
- buněčná diferenciace * genetika MeSH
- buněčná sebeobnova MeSH
- epigeneze genetická * MeSH
- indukované pluripotentní kmenové buňky cytologie metabolismus MeSH
- lidé MeSH
- metylace DNA MeSH
- mitochondrie genetika metabolismus MeSH
- nádorová transformace buněk genetika metabolismus MeSH
- nestabilita genomu MeSH
- oxidace-redukce * MeSH
- oxidační stres MeSH
- oxidativní fosforylace MeSH
- pluripotentní kmenové buňky cytologie metabolismus MeSH
- přeprogramování buněk genetika MeSH
- regenerativní lékařství MeSH
- transplantace kmenových buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The use of autologous (or syngeneic) cells derived from induced pluripotent stem cells (iPSCs) holds great promise for future clinical use in a wide range of diseases and injuries. It is expected that cell replacement therapies using autologous cells would forego the need for immunosuppression, otherwise required in allogeneic transplantations. However, recent studies have shown the unexpected immune rejection of undifferentiated autologous mouse iPSCs after transplantation. Whether similar immunogenic properties are maintained in iPSC-derived lineage-committed cells (such as neural precursors) is relatively unknown. We demonstrate that syngeneic porcine iPSC-derived neural precursor cell (NPC) transplantation to the spinal cord in the absence of immunosuppression is associated with long-term survival and neuronal and glial differentiation. No tumor formation was noted. Similar cell engraftment and differentiation were shown in spinally injured transiently immunosuppressed swine leukocyte antigen (SLA)-mismatched allogeneic pigs. These data demonstrate that iPSC-NPCs can be grafted into syngeneic recipients in the absence of immunosuppression and that temporary immunosuppression is sufficient to induce long-term immune tolerance after NPC engraftment into spinally injured allogeneic recipients. Collectively, our results show that iPSC-NPCs represent an alternative source of transplantable NPCs for the treatment of a variety of disorders affecting the spinal cord, including trauma, ischemia, or amyotrophic lateral sclerosis.
- MeSH
- analýza přežití MeSH
- buněčná diferenciace MeSH
- chronická nemoc MeSH
- fibroblasty cytologie MeSH
- homologní transplantace MeSH
- humorální imunita MeSH
- imunologická tolerance MeSH
- imunosupresivní léčba MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- krysa rodu Rattus MeSH
- kůže cytologie MeSH
- mícha transplantace MeSH
- miniaturní prasata MeSH
- neostriatum patologie MeSH
- nervové kmenové buňky cytologie transplantace MeSH
- neurony cytologie MeSH
- poranění míchy patologie terapie MeSH
- prasata MeSH
- přeprogramování buněk MeSH
- regulace genové exprese MeSH
- stárnutí MeSH
- transplantace izogenní MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH