PEDOT Dotaz Zobrazit nápovědu
In this study, the de-icing performance is investigated between traditional carbon fibre-based coatings and novel MXene and poly(3,4-ethylenedioxythiophene)-coated single-walled carbon nanotube (PEDOT-CNT) nanocoatings, based on simple and scalable coating application. The thickness and morphology of the coatings are investigated using atomic force microscopy and scanning electron microscopy. Adhesion strength, as well as electrical properties, are evaluated on rough and glossy surfaces of the composite. The flexibility and electrical sensitivity of the coatings are studied under three-point bending. Additionally, the influence of ambient temperature on coating's electrical resistance is investigated. Finally, thermal imaging and Joule heating are analysed with high-accuracy infrared cameras. Under the same power density, the increase in average temperature is 84% higher for MXenes and 117% for PEDOT-CNT, when compared with fibre-based coatings. Furthermore, both nanocoatings result in up to three times faster de-icing. These easily processable nanocoatings offer fast and efficient de-icing for large composite structures such as wind turbine blades without adding any significant weight.
- Klíčová slova
- MXenes, PEDOT-CNT, de-icing, fibre-reinforced composites, nanocoatings, thermal imaging,
- Publikační typ
- časopisecké články MeSH
The main task of the research is to acquire fundamental knowledge about the effect of polymer structure on the physicochemical properties of films. A novel meta-material that can be used in manufacturing sensor layers was developed as a model. At the first stage, poly(sodium 4-styrenesulfonate) (PNaSS) cross-linked microspheres are synthesized (which are based on strong polyelectrolytes containing sulfo groups in each monomer unit), and at the second stage, PNaSS@PEDOT microspheres are formed. The poly(3,4-ethylenedioxythiophene) (PEDOT) shell was obtained by the acid-assisted self-polymerization of the monomer; this process is biologically safe and thus suitable for biomedical applications. The suitability of electrochemical impedance spectroscopy for E. coli detection was tested; it was revealed that the attached bacterial wall was destroyed upon application of constant oxidation potential (higher than 0.5 V), which makes the PNaSS@PEDOT microsphere particles promising materials for the development of antifouling coatings. Furthermore, under open-circuit conditions, the walls of E. coli bacteria were not destroyed, which opens up the possibility of employing such meta-materials as sensor films. Scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle, and wide-angle X-ray diffraction methods were applied in order to characterize the PNaSS@PEDOT films.
- Klíčová slova
- PEDOT, PNaSS, impedance, microspheres, smart surface,
- MeSH
- bicyklické sloučeniny heterocyklické chemie MeSH
- Escherichia coli * MeSH
- mikrosféry MeSH
- polymery * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bicyklické sloučeniny heterocyklické MeSH
- poly(3,4-ethylene dioxythiophene) MeSH Prohlížeč
- polymery * MeSH
In this theoretical study, we set out to demonstrate the substitution effect of PEDOT analogues on planarity as an intrinsic indicator for electronic performance. We perform a quantum mechanical (DFT) study of PEDOT and analogous model systems and demonstrate the usefulness of the ωB97X-V functional to simulate chalcogen bonds and other noncovalent interactions. We confirm that the chalcogen bond stabilizes the planar conformation and further visualize its presence via the electrostatic potential surface. In comparison to the prevalent B3LYP, we gain 4-fold savings in computational time and simulate model systems of up to a dodecamer. Implications for design of conductive polymers can be drawn from the results, and an example for self-doped polymers is presented where modulation of the strength of the chalcogen bond plays a significant role.
- Publikační typ
- časopisecké články MeSH
Precise deposition of metal-organic framework (MOF) materials is important for fabricating high-performing MOF-based devices. Electric-field assisted drop-casting of poly(3,4-ethylenedioxythiophene)-functionalized (PEDOT) MIL-101(Cr) nanoparticles onto interdigitated electrodes allowed their precise spatioselective deposition as percolating nanoparticle chains in the interelectrode gaps. The resulting aligned materials were investigated for resistive and capacitive humidity sensing and compared with unaligned samples prepared via regular drop-casting. The spatioselective deposition of MOFs resulted in up to over 500 times improved conductivity and approximately 6 times increased responsivity during resistive humidity sensing. The aligned samples also showed good capacitive humidity sensing performance, with up to 310 times capacitance gain at 10 versus 90 % relative humidity. In contrast, the resistive behavior of the unaligned samples rendered them unsuitable for capacitive sensing. This work demonstrates that applying an alternating potential during drop-casting is a simple yet effective method to control MOF deposition for greater efficiency, conductivity, and enhanced humidity sensing performance.
- Klíčová slova
- Conductive MOFs, Electric-field alignment, Electrical conductivity, Metal-organic frameworks, Sensors,
- Publikační typ
- časopisecké články MeSH
Conductive hydrogels are polymeric materials that are promising for bioelectronic applications. In the present study, a complex based on sulfonic cryogels and poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated as an example of a conductive hydrogel. Preparation of polyacrylate cryogels of various morphologies was carried out by cryotropic gelation of 3-sulfopropyl methacrylate and sulfobetaine methacrylate in the presence of functional comonomers (2-hydroxyethyl methacrylate and vinyl acetate). Polymerization of 3,4-ethylenedioxythiophene in the presence of several of the above cryogels occurred throughout the entire volume of each polyelectrolyte cryogel because of its porous structure. Structural features of cryogel@PEDOT complexes in relation to their electrochemical properties were investigated. It was shown that poly(3,4-ethylenedioxythiophene) of a linear conformation was formed in the presence of a cryogel based on sulfobetaine methacrylate, while minimum values of charge-transfer resistance were observed in those complexes, and electrochemical properties of the complexes did not depend on diffusion processes.
- Klíčová slova
- composite PEDOT@polyelectrolyte, electrochemical impedance spectroscopy, polyelectrolyte gels,
- MeSH
- kryogely * chemie MeSH
- methakryláty * chemie MeSH
- polyelektrolyty MeSH
- polymerizace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3,4-ethylenedioxythiophene MeSH Prohlížeč
- kryogely * MeSH
- methakryláty * MeSH
- polyelektrolyty MeSH
- sulfobetaine MeSH Prohlížeč
The cytocompatibility of cardiomyocytes derived from embryonic stem cells and neural progenitors, which were seeded on the surface of composite films made of graphene oxide (GO) and polypyrrole (PPy-GO) or poly(3,4-ethylenedioxythiophene) (PEDOT-GO) are reported. The GO incorporated in the composite matrix contributes to the patterning of the composite surface, while the electrically conducting PPy and PEDOT serve as ion-to-electron transducers facilitating electrical stimulation/sensing. The films were fabricated by a simple one-step electropolymerization procedure on electrically conducting indium tin oxide (ITO) and graphene paper (GP) substrates. Factors affecting the cell behaviour, i.e. the surface topography, wettability, and electrical surface conductivity, were studied. The PPy-GO and PEDOT-GO prepared on ITO exhibited high surface conductivity, especially in the case of the ITO/PPy-GO composite. We found that for cardiomyocytes, the PPy-GO and PEDOT-GO composites counteracted the negative effect of the GP substrate that inhibited their growth. Both the PPy-GO and PEDOT-GO composites prepared on ITO and GP significantly decreased the cytocompatibility of neural progenitors. The presented results enhance the knowledge about the biological properties of electroactive materials, which are critical for tissue engineering, especially in context stimuli-responsive scaffolds.
- Klíčová slova
- Cardiomyocytes, Composites, Graphene oxide, Neural progenitors, PEDOT, Polypyrrole,
- MeSH
- bicyklické sloučeniny heterocyklické chemie MeSH
- elektrická vodivost * MeSH
- elektrochemie * MeSH
- grafit farmakologie MeSH
- kardiomyocyty cytologie účinky léků MeSH
- myši MeSH
- nervové kmenové buňky cytologie účinky léků MeSH
- neurogeneze účinky léků MeSH
- polymery chemie farmakologie MeSH
- pyrroly chemie MeSH
- voda chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bicyklické sloučeniny heterocyklické MeSH
- grafit MeSH
- graphene oxide MeSH Prohlížeč
- poly(3,4-ethylene dioxythiophene) MeSH Prohlížeč
- polymery MeSH
- polypyrrole MeSH Prohlížeč
- pyrroly MeSH
- voda MeSH
Organic electrochemical transistors (OECTs) are promising building blocks for bioelectronic devices such as sensors and neural interfaces. While the majority of OECTs use simple planar geometry, there is interest in exploring how these devices operate with much shorter channels on the submicron scale. Here, we show a practical route toward the minimization of the channel length of the transistor using traditional photolithography, enabling large-scale utilization. We describe the fabrication of such transistors using two types of conducting polymers. First, commercial solution-processed poly(dioxyethylenethiophene):poly(styrene sulfonate), PEDOT:PSS. Next, we also exploit the short channel length to support easy in situ electropolymerization of poly(dioxyethylenethiophene):tetrabutyl ammonium hexafluorophosphate, PEDOT:PF6. Both variants show different promising features, leading the way in terms of transconductance (gm), with the measured peak gm up to 68 mS for relatively thin (280 nm) channel layers on devices with the channel length of 350 nm and with widths of 50, 100, and 200 μm. This result suggests that the use of electropolymerized semiconductors, which can be easily customized, is viable with vertical geometry, as uniform and thin layers can be created. Spin-coated PEDOT:PSS lags behind with the lower values of gm; however, it excels in terms of the speed of the device and also has a comparably lower off current (300 nA), leading to unusually high on/off ratio, with values up to 8.6 × 104. Our approach to vertical gap devices is simple, scalable, and can be extended to other applications where small electrochemical channels are desired.
- Klíčová slova
- PEDOT, electrochemical polymerization, microfabrication, vertical organic electrochemical transistor,
- Publikační typ
- časopisecké články MeSH
Conducting polymer polyelectrolyte microspheres are typically composed of a cationic conducting polymer and an anionic polymer. The polymer chains inside these microspheres are physically or chemically cross-linked, creating a network that enables high water retention. Poly(3,4-ethylenedioxythiophene) (PEDOT) being an electrically conductive polymer exhibits a high conductivity and has great biotechnological applications. The unique combination of properties of PEDOT containing polyelectrolyte microspheres makes them widely investigated materials for electroresponsive cells, tissue engineering, and bio-sensors. The demand to produce PEDOT with varied properties depending the specific application requires the understanding of the basic principles of template formation. In the present work, we studied the inverse suspension polymerization of p-styrenesulfonic acid in the presence of a cross-linking agent as a synthetic way for the formation of porous polyelectrolyte microspheres. We traced how the nature of the emulsifier affected both the structure of the surface layer of the microspheres and the degree of their cross-linking. The porous structure of polyelectrolyte microspheres obtained is found to promote the polymerization of EDOT in their presence throughout the entire microsphere volume. The structural characteristics of the polyelectrolyte/PEDOT complexes in relation to their electrochemical properties have been studied.
- Publikační typ
- časopisecké články MeSH
Thin composite films comprising two primary representatives of conducting polymers, poly(3, 4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), with eco-friendly cellulose nanocrystals (CNC) were prepared through electrochemical polymerization. The combination of CNC and PEDOT (or PPy) results in the formation of films with highly different surface topography and thickness. Intriguingly, different surface conductivity of PEDOT and PPy was revealed by atomic force microscopy albeit that the electrochemical properties were rather similar. The biological properties of the composites in contact with prospective human induced pluripotent stem cells (hiPSC) and cardiomyocytes derived from hiPSC demonstrated good cytocompatibility of both composites and their potential in engineering of electro-sensitive tissues. The as-prepared conducting, eco-friendly and cytocompatible composites are thus promising candidates for biomedical applications where stimuli-responsivity is a crucial cell-instructive property.
- Klíčová slova
- Cellulose nanocrystals, Human induced pluripotent stem cells, Poly(3,4-ethylenedioxythiophene), Polypyrrole,
- MeSH
- celulosa chemie MeSH
- indukované pluripotentní kmenové buňky * MeSH
- lidé MeSH
- nanočástice * MeSH
- polymery chemie MeSH
- prospektivní studie MeSH
- pyrroly chemie MeSH
- tkáňové inženýrství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- celulosa MeSH
- polymery MeSH
- pyrroly MeSH
H2 O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2 O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2 O2 ). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2 O2 -sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2 O2 delivery system, paving the way to ROS-based organic bioelectronics.
- Klíčová slova
- Xenopus laevis oocytes, electrochemistry, organic bioelectronics, potassium channels, reactive oxygen species,
- MeSH
- bicyklické sloučeniny heterocyklické metabolismus MeSH
- draslíkové kanály řízené napětím metabolismus MeSH
- modely u zvířat MeSH
- oocyty metabolismus MeSH
- oxidace-redukce MeSH
- peroxid vodíku metabolismus MeSH
- polymery metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bicyklické sloučeniny heterocyklické MeSH
- draslíkové kanály řízené napětím MeSH
- peroxid vodíku MeSH
- poly(3,4-ethylene dioxythiophene) MeSH Prohlížeč
- polymery MeSH
- reaktivní formy kyslíku MeSH