Powder diffraction Dotaz Zobrazit nápovědu
A considerable number of fatal intoxications have recently been connected with the growing popularity of new psychoactive substances (NPS). Therefore, there is a significant demand for the development of fast and facile field detection methods for NPS. These substances are often sold as blends (with inorganic or organic cutting agents), which may further complicate detection. X-Ray powder diffraction (XRPD) was evaluated as a suitable and easily employable analytical method for the identification of NPS. XRPD has been successfully used for the differentiation of eight synthetic cathinones with a similar molecular structure. Moreover, this method was also used for the identification of four drugs in authentic street samples. XRPD is a facile non-destructive method that can identify not only NPS in mixtures but also the cutting agents. The small amount of substances needed for the measurement, which can be re-used for other analyses, further enhances the versatility of this method.
- Klíčová slova
- Cathinones, Drug analysis, Drug identification, New psychoactive substances, X-Ray powder diffraction,
- MeSH
- alkaloidy analýza MeSH
- difrakce rentgenového záření MeSH
- prášková difrakce MeSH
- psychotropní léky analýza MeSH
- stimulanty centrálního nervového systému analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy MeSH
- cathinone MeSH Prohlížeč
- psychotropní léky MeSH
- stimulanty centrálního nervového systému MeSH
A modern scanning electron microscope equipped with a pixelated detector of transmitted electrons can record a four-dimensional (4D) dataset containing a two-dimensional (2D) array of 2D nanobeam electron diffraction patterns; this is known as a four-dimensional scanning transmission electron microscopy (4D-STEM). In this work, we introduce a new version of our method called 4D-STEM/PNBD (powder nanobeam diffraction), which yields high-resolution powder diffractograms, whose quality is fully comparable to standard TEM/SAED (selected-area electron diffraction) patterns. Our method converts a complex 4D-STEM dataset measured on a nanocrystalline material to a single 2D powder electron diffractogram, which is easy to process with standard software. The original version of 4D-STEM/PNBD method, which suffered from low resolution, was improved in three important areas: (i) an optimized data collection protocol enables the experimental determination of the point spread function (PSF) of the primary electron beam, (ii) an improved data processing combines an entropy-based filtering of the whole dataset with a PSF-deconvolution of the individual 2D diffractograms and (iii) completely re-written software automates all calculations and requires just a minimal user input. The new method was applied to Au, TbF3 and TiO2 nanocrystals and the resolution of the 4D-STEM/PNBD diffractograms was even slightly better than that of TEM/SAED.
- Klíčová slova
- 4D-STEM, nanoparticle analysis, powder nanobeam electron diffraction,
- Publikační typ
- časopisecké články MeSH
A common way of speeding up powder diffraction measurements is the use of one- or two-dimensional detectors. This usually goes hand in hand with worse resolution and asymmetric peak profiles. In this work the influence of a straight linear detector on the resolution function in the Bragg-Brentano focusing geometry is discussed. Because of the straight nature of most modern detectors geometrical defocusing occurs, which heavily influences the line shape of diffraction lines at low angles. An easy approach to limit the resolution-degrading effects is presented. The presented algorithm selects an adaptive range of channels of the linear detector at low angles, resulting in increased resolution. At higher angles the whole linear detector is used and the data collection remains fast. Using this algorithm a well behaved resolution function is obtained in the full angular range, whereas using the full linear detector the resolution function varies within one pattern, which hinders line-shape and Rietveld analysis.
- Klíčová slova
- Bragg–Brentano, line shape, linear detector, powder diffraction, resolution function,
- Publikační typ
- časopisecké články MeSH
We introduce a novel scanning electron microscopy (SEM) method which yields powder electron diffraction patterns. The only requirement is that the SEM microscope must be equipped with a pixelated detector of transmitted electrons. The pixelated detectors for SEM have been commercialized recently. They can be used routinely to collect a high number of electron diffraction patterns from individual nanocrystals and/or locations (this is called four-dimensional scanning transmission electron microscopy (4D-STEM), as we obtain two-dimensional (2D) information for each pixel of the 2D scanning array). Nevertheless, the individual 4D-STEM diffractograms are difficult to analyze due to the random orientation of nanocrystalline material. In our method, all individual diffractograms (showing randomly oriented diffraction spots from a few nanocrystals) are combined into one composite diffraction pattern (showing diffraction rings typical of polycrystalline/powder materials). The final powder diffraction pattern can be analyzed by means of standard programs for TEM/SAED (Selected-Area Electron Diffraction). We called our new method 4D-STEM/PNBD (Powder NanoBeam Diffraction) and applied it to three different systems: Au nano-islands (well diffracting nanocrystals with size ~20 nm), small TbF3 nanocrystals (size < 5 nm), and large NaYF4 nanocrystals (size > 100 nm). In all three cases, the STEM/PNBD results were comparable to those obtained from TEM/SAED. Therefore, the 4D-STEM/PNBD method enables fast and simple analysis of nanocrystalline materials, which opens quite new possibilities in the field of SEM.
- Klíčová slova
- 4D-STEM/PNBD, nanoparticle analysis, powder nanobeam electron diffraction,
- Publikační typ
- časopisecké články MeSH
New psychoactive substances (NPSs) are associated with a significant number of intoxications. With the number of readily available forms of these drugs rising every year, there are even risks for the general public. Consequently, there is a high demand for methods sufficiently sensitive to detect NPSs in samples found at the crime scene. Infrared (IR) and Raman spectroscopies are commonly used for such detection, but they have limitations; for example, fluorescence in Raman can overlay the signal and when the sample is a mixture sometimes neither Raman nor IR is able to identify the compounds. Here, we investigate the potential of X-ray powder diffraction (XRPD) to analyse samples seized on the black market. A series of psychoactive substances (heroin, cocaine, mephedrone, ephylone, butylone, JWH-073, and naphyrone) was measured. Comparison of their diffraction patterns with those of the respective standards showed that XRPD was able to identify each of the substances. The same samples were analyzed using IR and Raman, which in both cases were not able to detect the compounds in all of the samples. These results suggest that XRPD could be a valuable addition to the range of forensic tools used to detect these compounds in illicit drug samples.
- Klíčová slova
- Raman spectroscopy, X-ray powder diffraction, drug detection, infrared spectroscopy, new psychoactive substances,
- Publikační typ
- časopisecké články MeSH
The Fe-28 at.% Al alloy was studied in this article. The aim was to describe the influence of gas atomized powder pre-milling before SPS (Spark Plasma Sintering) sintering on the structure and properties of the bulk materials. The initial powder was milled for 0.5, 1, and 8 h. It was proven that 1 h milling leads to the change in size and morphology of the particles, B2→A2 phase transformation, and to the contamination with the material from a milling vessel. Powder materials were compacted by the SPS process at 900, 1000, and 1100 °C. The differences between the bulk materials were tested by LM, SEM, and TEM microscopy, XRD, and neutron diffraction methods. It was proven that, although the structures of initial powder (B2) and milled powder (A2) were different, both provide after-sintering material with the same structure (D03) with similar structural parameters. Higher hardness and improved ductility of the material sintered from the milled powder are likely caused by the change in chemical composition during the milling process.
- Klíčová slova
- FeAl, SPS compaction, ball milling, neutron diffraction,
- MeSH
- difrakce rentgenového záření MeSH
- hliník chemie MeSH
- mikroskopie elektronová rastrovací MeSH
- mikrotechnologie metody MeSH
- neutronová difrakce MeSH
- povrchové vlastnosti MeSH
- prášky, zásypy, pudry chemie MeSH
- slitiny chemie MeSH
- teplota MeSH
- testování materiálů metody MeSH
- transmisní elektronová mikroskopie MeSH
- tvrdost MeSH
- velikost částic MeSH
- železo chemie MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hliník MeSH
- prášky, zásypy, pudry MeSH
- slitiny MeSH
- železo MeSH
Electron crystallography has made enormous progress over the last decade. It can provide the necessary information that complements powder diffraction data and allows for successful structure analysis of (not only) modulated structures.
- Klíčová slova
- anion-deficient perovskites, modulated structures, powder diffraction, transmission electron microscopy,
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
In this work, we studied model stratum corneum lipid mixtures composed of the hydroxylated skin ceramides N-lignoceroyl 6-hydroxysphingosine (Cer[NH]) and α-hydroxylignoceroyl phytosphingosine (Cer[AP]). Two model skin lipid mixtures of the composition Cer[NH] or Cer[AP], N-lignoceroyl sphingosine (Cer[NS]), lignoceric acid (C24:0) and cholesterol in a 0.5:0.5:1:1 molar ratio were compared. Model membranes were investigated by differential scanning calorimetry and 2H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Each component of the model mixture was specifically deuterated for selective detection by 2H NMR. Thus, the exact phase composition of the mixture at varying temperatures could be quantified. Moreover, using X-ray powder diffraction we investigated the lamellar phase formation. From the solid-state NMR and DSC studies, we found that both hydroxylated Cer[NH] and Cer[AP] exhibit a similar phase behavior. At physiological skin temperature of 32 °C, the lipids form a crystalline (orthorhombic) phase. With increasing temperature, most of the lipids become fluid and form a liquid-crystalline phase, which converts to the isotropic phase at higher temperatures (65-80 °C). Interestingly, lignoceric acid in the Cer[NH]-containing mixture has a tendency to form two types of fluid phases at 65 °C. This tendency was also observed in Cer[AP]-containing membranes at 80 °C. While Cer[AP]-containing lipid models formed a short periodicity phase featuring a repeat spacing of d = 5.4 nm, in the Cer[NH]-based model skin lipid membranes, the formation of unusual long periodicity phase with a repeat spacing of d = 10.7 nm was observed.
- Klíčová slova
- Hydroxylated skin ceramides, Lipid packing, Model membranes, Order parameter, Thermotropic phase behavior,
- MeSH
- biologické modely MeSH
- ceramidy chemie metabolismus MeSH
- cholesterol chemie MeSH
- deuterium chemie MeSH
- hydroxylace fyziologie MeSH
- kůže chemie metabolismus MeSH
- lidé MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- magnetická rezonanční spektroskopie metody MeSH
- permeabilita buněčné membrány MeSH
- prášková difrakce metody MeSH
- rentgenové záření MeSH
- teplota kůže fyziologie MeSH
- teplota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- cholesterol MeSH
- deuterium MeSH
- lipidové dvojvrstvy MeSH
With the emergence of ultrafast X-ray sources, interest in following fast processes in small molecules and macromolecules has increased. Most of the current research into ultrafast structural dynamics of macromolecules uses X-ray free-electron lasers. In parallel, small-scale laboratory-based laser-driven ultrafast X-ray sources are emerging. Continuous development of these sources is underway, and as a result many exciting applications are being reported. However, because of their low flux, such sources are not commonly used to study the structural dynamics of macromolecules. This article examines the feasibility of time-resolved powder diffraction of macromolecular microcrystals using a laboratory-scale laser-driven ultrafast X-ray source.
- Klíčová slova
- macromolecular structure, time-resolved X-ray diffraction, ultrafast X-rays,
- Publikační typ
- časopisecké články MeSH
Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size-strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensity values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.
- Klíčová slova
- crystalline domain size, line profile analysis, microstrain, powder diffraction,
- Publikační typ
- časopisecké články MeSH