Vitis Dotaz Zobrazit nápovědu
Bacterial endophytes are known to protect Vitis vinifera L. against various harmful effects of the environment and support its growth. However, for the most part, biochemical responses of such co-existence have not yet been fully elucidated. In this work, we aimed to characterize the activities of endophytic consortia in a plant-endophyte extract by measuring five indicators of colonization (overall endophyte metabolic activity, microbial ACC deaminase activity, ability to solubilize phosphorus, ability to convert atmospheric nitrogen to ammonia ions, and ability to produce growth promoting indole acetic acid), and find relationships between these activities and metabolome. The V. vinifera canes for the metabolomics fingerprinting were extracted successively with water and methanol, and analysed by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. For data processing, the MS-DIAL - MS-CleanR - MS-FINDER software platform was used, and the data matrix was processed by PCA and PLS-DA multivariate statistical methods. The metabolites that were upregulated with the heavy endophyte colonization were mainly chlorins, phenolics, flavonoid and terpenoid glycosides, tannins, dihydropyranones, sesquiterpene lactones, and long-chain unsaturated fatty acids.
- Klíčová slova
- Vitis vinifera, bacterial endophytes, growth promoting indicators, high resolution mass spectrometry, metabolomics fingerprinting,
- MeSH
- Bacillaceae metabolismus MeSH
- endofyty metabolismus MeSH
- Enterobacteriaceae metabolismus MeSH
- metabolomika * MeSH
- Micrococcaceae metabolismus MeSH
- Pseudomonadaceae metabolismus MeSH
- Vitis chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Gray mold caused by Botrytis cinerea is one of the most important diseases of grapevine resulting in significant reductions in yield and fruit quality. In order to examine the molecular mechanisms that characterize the interaction between B. cinerea and the host plant, the grapevine cytoplasmic proteome was analyzed by two-dimensional polyacrylamide gel electrophoresis. The interaction between Vitis vinifera cv. Gamay cells and B. cinerea was characterized by the increase in spot abundance of 30 proteins, of which 21 were successfully identified. The majority of these proteins were related to defence and stress responses and to cell wall modifications. Some of the modulated proteins have been previously found to be affected by other pathogens when they infect V. vinifera but interestingly, the proteins related to cell wall modification that were influenced by B. cinerea have not been shown to be modulated by any other pathogen studied to date. Transcript analysis using the quantitative real time polymerase chain reaction additionally revealed the up-regulation of several acidic, probably extracellular, chitinases. The results indicate that cell wall strengthening, accumulation of PR proteins and excretion of lytic enzymes are likely to be important mechanisms in the defence of grapevine against B. cinerea. BIOLOGICAL SIGNIFICANCE: Although gray mold caused by Botrytis cinerea is one of the most important diseases of grapevine, little information is available about proteomic changes in this pathosystem. These results suggest that cell wall strengthening, accumulation of PR proteins and excretion of lytic enzymes are important molecular mechanisms in the defence of grapevine against B. cinerea. Surprisingly, the proteins related to cell wall modification that were modulated by B. cinerea have not been shown to be affected by any other pathogen studied to date.
- Klíčová slova
- Botrytis cinerea, Cytoplasmic proteome, Defence, Transcript analysis, Vacuolar proteome, Vitis vinifera,
- MeSH
- Botrytis * MeSH
- nemoci rostlin * MeSH
- proteom metabolismus MeSH
- rostlinné buňky metabolismus mikrobiologie MeSH
- rostlinné proteiny metabolismus MeSH
- Vitis metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
- rostlinné proteiny MeSH
BACKGROUND AND AIMS: Xylella fastidiosa (Xf) is the xylem-dwelling bacterium associated with Pierce's disease (PD), which causes mortality in agriculturally important species, such as grapevine (Vitis vinifera). The development of PD symptoms in grapevines depends on the ability of Xf to produce cell-wall-degrading enzymes to break up intervessel pit membranes and systematically spread through the xylem vessel network. Our objective here was to investigate whether PD resistance could be mechanistically linked to xylem vessel network local connectivity. METHODS: We used high-resolution X-ray micro-computed tomography (microCT) imaging to identify and describe the type, area and spatial distribution of intervessel connections for six different grapevine genotypes from three genetic backgrounds, with varying resistance to PD (four PD resistant and two PD susceptible). KEY RESULTS: Our results suggest that PD resistance is unlikely to derive from local xylem network connectivity. The intervessel pit area (Ai) varied from 0.07 ± 0.01 mm2 mm-3 in Lenoir to 0.17 ± 0.03 mm2 mm-3 in Blanc do Bois, both PD resistant. Intervessel contact fraction (Cp) was not statically significant, but the two PD-susceptible genotypes, Syrah (0.056 ± 0.015) and Chardonnay (0.041 ± 0.013), were among the most highly connected vessel networks. Neither Ai nor Cp explained differences in PD resistance among the six genotypes. Bayesian re-analysis of our data shows moderate evidence against the effects of the traits analysed: Ai (BF01 = 4.88), mean vessel density (4.86), relay diameter (4.30), relay density (3.31) and solitary vessel proportion (3.19). CONCLUSIONS: Our results show that radial and tangential xylem network connectivity is highly conserved within the six different Vitis genotypes we sampled. The way that Xf traverses the vessel network may limit the importance of local network properties to its spread and may confer greater importance on host biochemical responses.
- Klíčová slova
- Xylella fastidiosa, Grapevine (Vitis spp.), X-ray microcomputed tomography, intervessel pit area, vascular pathogens, vessel contact fraction, vessel density, vessel diameter, xylem vessel network,
- MeSH
- genotyp MeSH
- nemoci rostlin * mikrobiologie MeSH
- odolnost vůči nemocem MeSH
- rentgenová mikrotomografie MeSH
- Vitis * mikrobiologie fyziologie MeSH
- Xylella * fyziologie MeSH
- xylém * fyziologie mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Xylem networks are vulnerable to the formation and spread of gas embolisms that reduce water transport. Embolisms spread through interconduit pits, but the three-dimensional (3D) complexity and scale of xylem networks means that the functional implications of intervessel connections are not well understood. Here, xylem networks of grapevine (Vitis vinifera L.) were reconstructed from 3D high-resolution X-ray micro-computed tomography (microCT) images. Xylem network performance was then modeled to simulate loss of hydraulic conductivity under increasingly negative xylem sap pressure simulating drought stress conditions. We also considered the sensitivity of xylem network performance to changes in key network parameters. We found that the mean pit area per intervessel connection was constant across 10 networks from three, 1.5-m stem segments, but short (0.5 cm) segments fail to capture complete network connectivity. Simulations showed that network organization imparted additional resistance to embolism spread beyond the air-seeding threshold of pit membranes. Xylem network vulnerability to embolism spread was most sensitive to variation in the number and location of vessels that were initially embolized and pit membrane vulnerability. Our results show that xylem network organization can increase stem resistance to embolism spread by 40% (0.66 MPa) and challenge the notion that a single embolism can spread rapidly throughout an entire xylem network.
Fungal endophytes occurring in grapevine (Vitis vinifera L.) are usually important sources of various compounds with biological activities with great potential for use in agriculture. Nevertheless, many species isolated from this plant belong to the genera Fusarium, Alternaria, or Aspergillus, all of which are well-known to produce mycotoxins. Our study is focused on the assessment of the toxinogenic potential of fungal endophytes isolated from vineyards in the Czech Republic. In total, 20 endophytic fungal species were cultivated in wine must, and 57 mycotoxins of different classes were analysed by liquid chromatography coupled with mass spectrometry. As a result, alternariol, tentoxin, meleagrin, roquefortine C, gliotoxin, and verruculogen were detected in the culture medium, of which verruculogen followed by gliotoxin were the most frequent (present in 90 and 40% of samples, respectively) and most concentrated (up to thousands ng/mL). The alternaria mycotoxins alternariol and tentoxin were detected not only in Alternaria sp. cultures, but traces of these mycotoxins were also quantified in the Diatripe and Epicoccum cultures. Meleagrin and roquefortine C were detected in Didymella sancta and Penicillium crustosum, gliotoxin was detected in Alternaria sp., Didymella sp., Aureobasidium pullulans, Cladosporium herbarum, Penicillium crustosum and Pleurophoma ossicola, and verruculogen was quantified in 99% of endophytic isolates investigated. The potential of endophytes to produce mycotoxins should be carefully checked, specifically in cases where they are intended for the purpose of V. vinifera growing.
- Klíčová slova
- endophytes, liquid chromatography, mass spectrometry, microscopic filamentous fungi, mycotoxins,
- MeSH
- endofyty * MeSH
- houby metabolismus MeSH
- mykotoxiny metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- Vitis mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mykotoxiny MeSH
- regulátory růstu rostlin MeSH
This paper represents the results of screening a diversity of fungal endophytes associated with Vitis vinifera leaves and canes in the Czech Republic. The characterization of strains is based on morphological and phylogenetic analyses of ITS, EF1α and TUB2 sequence data. Our strain selection covers 16 species and seven orders belonging to Ascomycota and Basidiomycota. Together with ubiquitous fungi, we report on several poorly known plant-associated fungi, Angustimassarina quercicola (= A. coryli, a synonym proposed in this study) and Pleurophoma pleurospora. Other species, such as Didymella negriana, D. variabilis, Neosetophoma sp. (species identical or sister to N. rosae), Phragmocamarosporium qujingensis and Sporocadus rosigena, have so far been little known and rarely found, but are frequent on V. vinifera in different parts of the world and obviously belong to a microbiota with a strong preference for this plant. Detailed taxonomical identification allowed us to identify species with apparent stable associations with V. vinifera, for which further interactions with V. vinifera can be expected. Our study is the first to focus on V. vinifera endophytes in Central Europe and expands the knowledge about their taxonomy, ecology and geography.
- Klíčová slova
- Angustimassarina, Didymella, Ecology, Endophytes, Host preference, Neosetophoma, Phragmocamarosporium qujingensis, Sporocadus, Vitis vinifera,
- MeSH
- Basidiomycota * MeSH
- endofyty genetika MeSH
- fylogeneze MeSH
- houby MeSH
- Vitis * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: The research focused on the evaluation of the impact of cover cropping on trace metals (Fe, Mn, Cu, Zn, Pb, Co and Cd) and nutrients in vineyard soils and Vitis vinifera L. For this purpose, two types of cover crops (Lolium perenne L. and Medicago sativa L.) and their mixture were planted between vine rows of Muscat white in the vineyard in South Crimea. Trace elements, nutrients and other parameters were analyzed in the soil layers, leaves and grapevines of control and cover cropped plots. RESULTS: The effect of cover cropping was dependent on applied plant species. Ryegrass (L. perenne L.) seems to compete with V. vinifera L. for nutrients - these were lower in the soil and vines of the treated plot. In parallel, lead (Pb) bioconcentration in grapevines was reduced. In contrast, under lucerne (M. sativa L.), nitrogen in the soil and vines, and trace metal bioconcentration (Fe, Pb and Co) were higher. CONCLUSIONS: Our results indicate that cover cropping can influence the chemical composition of soil and vines. This should be considered when selecting cover crops. © 2019 Society of Chemical Industry.
- Klíčová slova
- bioaccumulation, lucerne, nutrients, ryegrass, trace metals, vine,
- MeSH
- druhová specificita MeSH
- jílek růst a vývoj metabolismus MeSH
- Medicago růst a vývoj metabolismus MeSH
- ovoce chemie růst a vývoj metabolismus MeSH
- pěstování plodin metody MeSH
- půda chemie MeSH
- stopové prvky analýza metabolismus MeSH
- Vitis chemie růst a vývoj metabolismus MeSH
- živiny analýza metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- půda MeSH
- stopové prvky MeSH
Grape canes are a waste product from viticulture that show potential as an industrially extractable source of stilbenes, which are valuable for medical and other purposes. In this work, grape canes collected in three consecutive years (2014-2016) at six different places in South Moravia, Czech Republic were extracted, and the contents of trans-resveratrol, trans-ε-viniferin, and r2-viniferin were determined by high-performance liquid chromatography. The study included three blue grape varieties of Vitis vinifera L. (Cabernet Moravia, Blaufränkisch, and Piwi variety Laurot) and four white grape varieties (Chardonnay, Green Veltliner, Piwi variety Hibernal, and Piwi variety Malverina). From the viewpoint of producing extracts with high stilbenes content, the Hibernal variety is clearly the best. The mean amounts of the stilbenes for this variety at all localities and for all three years were 4.99 g/kg for trans-resveratrol, 3.24 g/kg for trans-ε-viniferin, and 1.73 g/kg for r2-viniferin. The influence of vintage, locality, and variety on the amounts of stilbenes was studied using PCA analysis. In contrast to expectations, there was no strong impact of locality on stilbenes content. The differences were varietal for most varieties, regardless of the area of cultivation. Laurot and Hibernal varieties did differ significantly in that respect, however, as they exhibited clear dependence on location.
- Klíčová slova
- Moravian wine region, Vitis vinifera L., grape cane, stilbenes,
- MeSH
- benzofurany analýza MeSH
- polyfenoly analýza MeSH
- resveratrol MeSH
- rostlinné extrakty analýza chemie MeSH
- stilbeny analýza chemie MeSH
- Vitis chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzofurany MeSH
- epsilon-viniferin MeSH Prohlížeč
- polyfenoly MeSH
- r2-viniferin MeSH Prohlížeč
- resveratrol MeSH
- rostlinné extrakty MeSH
- stilbeny MeSH
Diaporthe species are important pathogens, saprobes, and endophytes on grapevines. Several species are known, either as agents of pre- or post-harvest infections, as causal agents of many relevant diseases, including swelling arm, trunk cankers, leaf spots, root and fruit rots, wilts, and cane bleaching. A growing body of evidence exists that a class of small non-coding endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional gene regulation, during plant development and responses to biotic and abiotic stresses. In this study, we explored differentially expressed miRNAs in response to Diaporthe eres and Diaporthe bohemiae infection in Vitis vinifera cv. Chardonnay under in vitro conditions. We used computational methods to predict putative miRNA targets in order to explore the involvement of possible pathogen response pathways. We identified 136 known and 41 new miRNA sequence variants, likely generated through post-transcriptional modifications. In the Diaporthe eres treatment, 61 known and 17 new miRNAs were identified while in the Diaporthe bohemiae treatment, 101 known and 21 new miRNAs were revealed. Our results contribute to further understanding the role miRNAs play during plant pathogenesis, which is possibly crucial in understanding disease symptom development in grapevines infected by D. eres and D. bohemiae.
- Klíčová slova
- RT-qPCR, grapevine, high-throughput sequencing, miRNA,
- MeSH
- Ascomycota patogenita MeSH
- mikro RNA genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- transkriptom MeSH
- Vitis genetika mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
Overcoming host defensive traits is a prerequisite to establish compatible plant-parasite interactions. Following parasite perception, jasmonic (JA) and salicylic acid (SA) signalling pathways mediate biotic stress signals resulting in the activation of host defence responses. Piercing-sucking grape phylloxera (Daktulosphaira vitifoliae) infests Vitis spp. by the formation of organoid root galls. This study aims to investigate whether host defensive SA/JA signalling pathways are affected during D. vitifoliae infestation. We hypothesize that the JA signalling pathway is induced during larval probing (14 hai). Compatible root gall formation (24 hai - 14 dai) involves the reduction of the JA, but the induction of the SA signaling pathway. T5C (V.berlandieri x V.riparia) cuttings are infested with a D. vitifoliae single founder lineage (biotype C). Phytohormone quantification (HPLC-MS) and transcriptional alterations of JA/SA marker genes (qRT-PCR) are determined in root tissues from larval probing (14 hai) until gall formation (>14 dai). Non-infested root tips are considered controls. Our results show a significant induction of all analysed JA marker genes during insect probing (14 hai), but their significant reduction during early gall formation (24 hai). Following gall formation (5-14 dai) SA and JA-Ile increase. However, only the analysed SA marker genes are induced, whereas JA marker gene expression levels are significantly reduced. Based on this data we conclude that the observed suppression of the JA signalling pathway might represent an important step for the compatible D. vitifoliae - Vitis spp. root interaction. We discuss whether the induced SA defences protect nutritive root galls against soil microbes.
- Klíčová slova
- Grape phylloxera, Insect probing, Plant defence, Root gall formation, SA/JA signalling, Vitis spp,
- MeSH
- cyklopentany metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- nádory rostlin parazitologie MeSH
- oxylipiny metabolismus MeSH
- signální transdukce MeSH
- Vitis metabolismus parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklopentany MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina salicylová MeSH
- oxylipiny MeSH